A particle approximation of the solution of the Kushner-Stratonovitch equation

被引:42
作者
Crisan, D [1 ]
Lyons, T [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2BZ, England
关键词
Mathematics Subject Classification (1991): 93E11, 60G57, 65U05;
D O I
10.1007/s004400050249
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We construct a sequence of branching particle systems a, convergent in measure to the solution of the Kushner-Stratonovitch equation. The algorithm based on this result can be used to solve numerically the filtering problem. We prove that the rate of convergence of the algorithm is of order n(1/4). This paper is the third in a sequence, and represents the most efficient algorithm we have identified so far.
引用
收藏
页码:549 / 578
页数:30
相关论文
共 20 条
  • [1] ALDOUS DJ, 1978, ANN PROB, V6
  • [2] [Anonymous], MATH SCI ENG
  • [3] APPROXIMATION OF THE ZAKAI EQUATION BY THE SPLITTING UP METHOD
    BENSOUSSAN, A
    GLOWINSKI, R
    RASCANU, A
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1990, 28 (06) : 1420 - 1431
  • [4] APPROXIMATION OF SOME STOCHASTIC DIFFERENTIAL-EQUATIONS BY THE SPLITTING UP METHOD
    BENSOUSSAN, A
    GLOWINSKI, R
    RASCANU, A
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 1992, 25 (01) : 81 - 106
  • [5] Bensoussan A., 1992, STOCHASTIC CONTROL P
  • [6] CARPENTER JR, 1996, IEE C DIGEST, V243
  • [7] Nonlinear filtering and measure-valued processes
    Crisan, D
    Lyons, T
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 1997, 109 (02) : 217 - 244
  • [8] CRISAN D, UNPUB ANN APPL PROBA
  • [9] CRISAN D, UNIFORM UPPER BOUNDS
  • [10] CRISAN D, 1998, IN PRESS SIAM J APPL