共 45 条
Increased cloud activation potential of secondary organic aerosol for atmospheric mass loadings
被引:73
作者:
King, S. M.
[1
]
Rosenoern, T.
[1
]
Shilling, J. E.
[1
]
Chen, Q.
[1
]
Martin, S. T.
[1
,2
]
机构:
[1] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA
基金:
美国国家科学基金会;
关键词:
HYGROSCOPIC GROWTH;
AMMONIUM-SULFATE;
SURFACE TENSIONS;
PARTICLES;
CHAMBER;
MOBILITY;
INVERSION;
OXIDATION;
DIAMETER;
STATE;
D O I:
10.5194/acp-9-2959-2009
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
The effect of organic particle mass loading from 1 to >= 100 mu g m(-3) on the cloud condensation nuclei (CCN) properties of mixed organic-sulfate particles was investigated in the Harvard Environmental Chamber. Mixed particles were produced by the condensation of organic molecules onto ammonium sulfate particles during the dark ozonolysis of alpha-pinene. A continuous-flow mode of the chamber provided stable conditions over long time periods, allowing for signal integration and hence increased measurement precision at low organic mass loadings representative of atmospheric conditions. CCN activity was measured at eight mass loadings for 80- and 100-nm particles grown on 50-nm sulfate seeds. A two-component (organic/sulfate) Kohler model, which included the particle heterogeneity arising from DMA size selection and from organic volume fraction for the selected 80- and 100-nm particles, was used to predict CCN activity. For organic mass loadings of 2.9 mu g m(-3) and greater, the observed activation curves were well predicted using a single set of physicochemical parameters for the organic component. For mass loadings of 1.74 mu g m(-3) and less, the observed CCN activity increased beyond predicted values using the same parameters, implying changed physicochemical properties of the organic component. A sensitivity analysis suggests that a drop in surface tension must be invoked to explain quantitatively the CCN observations at low SOA particle mass loadings. Other factors, such as decreased molecular weight, increased density, or increased van't Hoff factor, can contribute to the explanation but are quantitatively insufficient as the full explanation.
引用
收藏
页码:2959 / 2971
页数:13
相关论文