Prediction of protein function using protein-protein interaction data

被引:36
作者
Deng, MH [1 ]
Zhang, K [1 ]
Mehta, S [1 ]
Chen, T [1 ]
Sun, FZ [1 ]
机构
[1] Univ So Calif, Dept Biol Sci, Mol & Computat Biol Program, Los Angeles, CA 90089 USA
来源
CSB2002: IEEE COMPUTER SOCIETY BIOINFORMATICS CONFERENCE | 2002年
关键词
D O I
10.1109/CSB.2002.1039342
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Assigning functions to novel proteins is one of the most important problems in the post-genomic era. Several approaches have been applied to this problem, including analyzing gene expression patterns, phylogenetic profiles, protein fusions and protein-protein interactions. We develop. a novel approach that applies the theory of Markov random fields to infer a protein's functions using protein-protein interaction data and the functional annotations of its interaction protein partners. For each function of interest and a protein, we predict the probability that the protein has that function using Bayesian approaches. Unlike in other available approaches for protein annotation where a protein has or does not have a function of interest, we give a probability for having the function. This probability indicates how confident we are about the prediction. We apply our method to predict cellular functions (43 categories including a category "others") for yeast proteins defined in the Yeast Proteome Database(YPD), using the protein-protein interaction data from the Munich Information Center for Protein Sequences (MIPS, http://mips.gsf.de). We show that our approach outperforms other available methods for function prediction based on protein interaction data.
引用
收藏
页码:197 / 206
页数:10
相关论文
共 31 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]   BIND - The Biomolecular Interaction Network Database [J].
Bader, GD ;
Donaldson, I ;
Wolting, C ;
Ouellette, BFF ;
Pawson, T ;
Hogue, CWV .
NUCLEIC ACIDS RESEARCH, 2001, 29 (01) :242-245
[3]   Knowledge-based analysis of microarray gene expression data by using support vector machines [J].
Brown, MPS ;
Grundy, WN ;
Lin, D ;
Cristianini, N ;
Sugnet, CW ;
Furey, TS ;
Ares, M ;
Haussler, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (01) :262-267
[4]  
CARLE A, 2002, BIOINFORMATICS, V18, P160
[5]   YPD™, PombePD™ and WormPD™:: model organism volumes of the BioKnowledge™ Library, an integrated resource for protein information [J].
Costanzo, MC ;
Crawford, ME ;
Hirschman, JE ;
Kranz, JE ;
Olsen, P ;
Robertson, LS ;
Skrzypek, MS ;
Braun, BR ;
Hopkins, KL ;
Kondu, P ;
Lengieza, C ;
Lew-Smith, JE ;
Tillberg, M ;
Garrels, JI .
NUCLEIC ACIDS RESEARCH, 2001, 29 (01) :75-79
[6]   First InP/InGaAs PNPHBT grown by metal organic chemical vapor deposition [J].
Cui, DL ;
Hsu, S ;
Pavlidis, D .
2001 INTERNATIONAL CONFERENCE ON INDIUM PHOSPHIDE AND RELATED MATERIALS, CONFERENCE PROCEEDINGS, 2001, :224-227
[7]  
DNEG M, 2002, P 6 INT C COMP MOL B
[8]   Cluster analysis and display of genome-wide expression patterns [J].
Eisen, MB ;
Spellman, PT ;
Brown, PO ;
Botstein, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (25) :14863-14868
[9]  
Fellenberg M, 2000, Proc Int Conf Intell Syst Mol Biol, V8, P152
[10]   Functional organization of the yeast proteome by systematic analysis of protein complexes [J].
Gavin, AC ;
Bösche, M ;
Krause, R ;
Grandi, P ;
Marzioch, M ;
Bauer, A ;
Schultz, J ;
Rick, JM ;
Michon, AM ;
Cruciat, CM ;
Remor, M ;
Höfert, C ;
Schelder, M ;
Brajenovic, M ;
Ruffner, H ;
Merino, A ;
Klein, K ;
Hudak, M ;
Dickson, D ;
Rudi, T ;
Gnau, V ;
Bauch, A ;
Bastuck, S ;
Huhse, B ;
Leutwein, C ;
Heurtier, MA ;
Copley, RR ;
Edelmann, A ;
Querfurth, E ;
Rybin, V ;
Drewes, G ;
Raida, M ;
Bouwmeester, T ;
Bork, P ;
Seraphin, B ;
Kuster, B ;
Neubauer, G ;
Superti-Furga, G .
NATURE, 2002, 415 (6868) :141-147