The fluid dynamical context of chemosensory behavior

被引:176
作者
Weissburg, MJ [1 ]
机构
[1] Georgia Inst Technol, Sch Biol, Atlanta, GA 30332 USA
关键词
D O I
10.2307/1542523
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The fluid mechanical environment provides the context in which denizens of aquatic realms, as well as terrestrial creatures, use chemoperception to search for objects. Our ability to understand the nature of olfactory-guided navigation rests on our proficiency at characterizing the fluid dynamic setting and at relating properties of flow to behavioral and sensory mechanisms. This work reviews some fluid dynamical concepts that are particularly useful in describing aspects of flow relevant to chemosensory navigation, and it considers studies of orientation in animals in light of these principles. Comparisons across broadly different fluid environments suggest that particular sensory and behavioral mechanisms may be tailored to specific flow regimes and stimulus environments. This is clearly evident when examining animals that operate in high vs. low Reynolds number flows. In other cases, animals may converge on common solutions in given flow regimes in spite of differences in taxonomic class or size. Potential parallels may include behavior of aquatic vs. terrestrial arthropods, and animals without fixed reference points in flows dominated by molecular vs. turbulent diffusion. In an effort to add further fluid dynamical underpinnings to navigational strategies, I suggest how simple nondimensional categorization of behavior in relation to flow may aid in identifying the forces underlying common elements, even across animals of seemingly disparate size and scale.
引用
收藏
页码:188 / 202
页数:15
相关论文
共 79 条
[2]   Numerical simulation of environmental modulation of chemical signal structure and odor dispersal in the open ocean [J].
Baird, RC ;
Johari, H ;
Jumper, GY .
CHEMICAL SENSES, 1996, 21 (02) :121-134
[3]   MANEUVERS USED BY FLYING MALE ORIENTAL FRUIT MOTHS TO RELOCATE A SEX-PHEROMONE PLUME IN AN EXPERIMENTALLY SHIFTED WIND-FIELD [J].
BAKER, TC ;
HAYNES, KF .
PHYSIOLOGICAL ENTOMOLOGY, 1987, 12 (03) :263-279
[4]   CHEMO-ORIENTATION [J].
BELL, WJ ;
TOBIN, TR .
BIOLOGICAL REVIEWS, 1982, 57 (MAY) :219-260
[5]   CHEMOTAXIS IN BACTERIA [J].
BERG, HC .
ANNUAL REVIEW OF BIOPHYSICS AND BIOENGINEERING, 1975, 4 :119-136
[6]   EFFECTS OF FLOW AND CONCENTRATION OF ATTRACTANT ON NEWLY HATCHED OYSTER DRILLS, UROSALPINX-CINEREA (SAY) [J].
BROWN, B ;
RITTSCHOF, D .
MARINE BEHAVIOUR AND PHYSIOLOGY, 1984, 11 (01) :75-93
[7]  
Christensen TA, 1996, J NEUROBIOL, V30, P82, DOI 10.1002/(SICI)1097-4695(199605)30:1<82::AID-NEU8>3.0.CO
[8]  
2-C
[9]  
Crenshaw HC, 1996, AM ZOOL, V36, P608