Salt stress induces up-regulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species Lycopersicon pennellii but not in the cultivated species

被引:192
作者
Mittova, V
Tal, M
Volokita, M
Guy, M
机构
[1] Ben Gurion Univ Negev, Jacob Blaustein Inst Desert Res, IL-84105 Beer Sheva, Israel
[2] Ben Gurion Univ Negev, Dept Life Sci, IL-84105 Beer Sheva, Israel
关键词
D O I
10.1034/j.1399-3054.2002.1150309.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The response of the chloroplastic antioxidant system of the cultivated tomato Lycopersicon esculentum (Lem) and its wild salt-tolerant related species L. pennellii (Lpa) to NaCl stress was studied. An increase in H-2 O-2 level and membrane lipid peroxidation was observed in chloroplasts of salt-stressed Lem. In contrast, a decrease in these indicators of oxidative stress characterized chloroplasts of salt-stressed Lpa plants. This differential response of Lem and Lpa to salinity, correlates with the activities of the antioxidative enzymes in their chloroplasts. Increased activities of total superoxide dismutase (SOD), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), glutathione-S-transferase (GST), phospholipid hydroperoxide glutathione peroxidase (PHGPX) and several isoforms of non-specific peroxidases (POD) were found in chloroplasts of salt-treated Lpa plants. In these chloroplasts, in contrast, activity of lipoxygenase (LOX) decreased while in those of salt-stressed Lem it increased. Although total SOD activity slightly increased in chloroplasts of salt-treated Lem plants, differentiation between SOD types revealed that only stromal Cu/ZnSOD activity increased. In contrast, in chloroplasts of salt-treated Lpa plants FeSOD activity increased while Cu/ZnSOD activity remained unchanged. These data indicate that salt-dependent oxidative stress and damage, suffered by Lem chloroplasts, was effectively alleviated in Lpa chloroplasts by the selective up-regulation of a set of antioxidative enzymes. Further support for the above idea was supplied by leaf discs experiments in which pre-exposure of Lpa plants to salt-treatment conferred cross-tolerance to paraquat-induced oxidative stress while increased oxidative damage by paraquat-treatment was found in salt-stressed Lem plants.
引用
收藏
页码:393 / 400
页数:8
相关论文
共 42 条
[1]  
Alscher RG, 1997, PHYSIOL PLANTARUM, V100, P224, DOI 10.1034/j.1399-3054.1997.1000203.x
[2]   COPPER ENZYMES IN ISOLATED CHLOROPLASTS - POLYPHENOLOXIDASE IN BETA-VULGARIS [J].
ARNON, DI .
PLANT PHYSIOLOGY, 1949, 24 (01) :1-15
[3]  
Asada K., 1996, Photosynthesis and the environment. Advances in photosynthesis and respiration, P123, DOI DOI 10.1007/0-306-48135-9_5
[4]   Protective function of chloroplast 2-cysteine peroxiredoxin in photosynthesis. Evidence from transgenic Arabidopsis [J].
Baier, M ;
Dietz, KJ .
PLANT PHYSIOLOGY, 1999, 119 (04) :1407-1414
[5]   A GLUTATHIONE-S-TRANSFERASE WITH GLUTATHIONE-PEROXIDASE ACTIVITY FROM ARABIDOPSIS-THALIANA - MOLECULAR-CLONING AND FUNCTIONAL-CHARACTERIZATION [J].
BARTLING, D ;
RADZIO, R ;
STEINER, U ;
WEILER, EW .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1993, 216 (02) :579-586
[6]   SUPEROXIDE-DISMUTASE AND STRESS TOLERANCE [J].
BOWLER, C ;
VANMONTAGU, M ;
INZE, D .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1992, 43 :83-116
[7]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[8]   Chlororespiration and poising of cyclic electron transport -: Plastoquinone as electron transporter between thylakoid NADH dehydrogenase and peroxidase [J].
Casano, LM ;
Zapata, JM ;
Martín, M ;
Sabater, B .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (02) :942-948
[9]   METABOLISM OF OXYGEN RADICALS IN PEROXISOMES AND CELLULAR IMPLICATIONS [J].
DELRIO, LA ;
SANDALIO, LM ;
PALMA, JM ;
BUENO, P ;
CORPAS, FJ .
FREE RADICAL BIOLOGY AND MEDICINE, 1992, 13 (05) :557-580
[10]  
DRAPER HH, 1990, METHOD ENZYMOL, V186, P421