Pore properties of rat brain II sodium channels mutated in the selectivity filter domain

被引:96
作者
Schlief, T
Schonherr, R
Imoto, K
Heinemann, SH
机构
[1] MAX PLANCK GESELL ZFDWEV,AG MOL & ZELLULARE BIOPHYS,D-07747 JENA,GERMANY
[2] NATL INST PHYSIOL SCI,DEPT INFORMAT PHYSIOL,OKAZAKI,AICHI 444,JAPAN
来源
EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS | 1996年 / 25卷 / 02期
关键词
sodium channel; permeation; selectivity; oocyte expression; mutagenesis;
D O I
10.1007/s002490050020
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Ion selectivity of voltage-activated sodium channels is determined by amino-acid residues in the pore regions of all four homologous repeats. The major determinants are the residues DEKA (for repeats I-IV) which form a putative ring structure in the pore; the homologous structure in Ca-channels consists of EEEE. By combining site-directed mutagenesis of a non-inactivating form of the rat brain sodium channel II with electrophysiological methods, we attempted to quantify the importance of charge, size, and side-chain position of the amino-acid residues within this ring structure on channel properties such as monovalent cation selectivity, single-channel conductance, permeation and selectivity of divalent cations, and channel block by extracellular Ca2+ and tetrodotoxin (TTX). In all mutant channels tested, even those with the same net charge in the ring structure as the wild type, the selectivity for Na+ and Li+ over K+, Rb+, Cs+, and NH4+ was significantly reduced. The changes in charge did not correlate in a simple fashion with the single-channel conductances. Permeation of divalent ions (Ca2+, Ba2+, Sr2+, Mg2+, Mn2+) was introduced by some of the mutations. The IC50 values for the Ca2+ block of Na+ currents decreased exponentially with increasing net negative charge of the selectivity ring. The sensitivity towards channel block by TTX was reduced in all investigated mutants. Mutations in repeat IV are an exception as they caused smaller effects on all investigated channel properties compared with the other repeats.
引用
收藏
页码:75 / 91
页数:17
相关论文
共 44 条
[1]   DEDUCED AMINO-ACID-SEQUENCE OF A PUTATIVE SODIUM-CHANNEL FROM THE SCYPHOZOAN JELLYFISH CYANEA-CAPILLATA [J].
ANDERSON, PAV ;
HOLMAN, MA ;
GREENBERG, RM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (15) :7419-7423
[2]   A MONOVALENT CATIONIC CONDUCTANCE THAT IS BLOCKED BY EXTRACELLULAR DIVALENT-CATIONS IN XENOPUS OOCYTES [J].
ARELLANO, RO ;
WOODWARD, RM ;
MILEDI, R .
JOURNAL OF PHYSIOLOGY-LONDON, 1995, 484 (03) :593-604
[3]   MOLECULAR LOCALIZATION OF AN ION-BINDING SITE WITHIN THE PORE OF MAMMALIAN SODIUM-CHANNELS [J].
BACKX, PH ;
YUE, DT ;
LAWRENCE, JH ;
MARBAN, E ;
TOMASELLI, GF .
SCIENCE, 1992, 257 (5067) :248-251
[4]   LIQUID JUNCTION POTENTIALS AND SMALL-CELL EFFECTS IN PATCH-CLAMP ANALYSIS [J].
BARRY, PH ;
LYNCH, JW .
JOURNAL OF MEMBRANE BIOLOGY, 1991, 121 (02) :101-117
[5]   Adjacent pore-lining residues within sodium channels identified by paired cysteine mutagenesis [J].
Benitah, JP ;
Tomaselli, GF ;
Marban, E .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (14) :7392-7396
[6]   Ion channels as targets for insecticides [J].
Bloomquist, JR .
ANNUAL REVIEW OF ENTOMOLOGY, 1996, 41 :163-190
[7]   STRUCTURE AND FUNCTION OF VOLTAGE-SENSITIVE ION CHANNELS [J].
CATTERALL, WA .
SCIENCE, 1988, 242 (4875) :50-61
[8]   Depth asymmetries of the pore-lining segments of the Na+ channel revealed by cysteine mutagenesis [J].
Chiamvimonvat, N ;
PerezGarcia, MT ;
Ranjan, R ;
Marban, E ;
Tomaselli, GF .
NEURON, 1996, 16 (05) :1037-1047
[9]   Control of ion flux and selectivity by negatively charged residues in the outer mouth of rat sodium channels [J].
Chiamvimonvat, N ;
PerezGarcia, MT ;
Tomaselli, GF ;
Marban, E .
JOURNAL OF PHYSIOLOGY-LONDON, 1996, 491 (01) :51-59
[10]   STABILIZATION OF SODIUM-CHANNEL STATES BY DELTAMETHRIN IN MOUSE NEUROBLASTOMA-CELLS [J].
CHINN, K .
JOURNAL OF PHYSIOLOGY-LONDON, 1986, 380 :191-207