Evolutionary stratified training set selection for extracting classification rules with trade off precision-interpretability

被引:77
作者
Cano, Jose Ramon [1 ]
Herrera, Francisco
Lozano, Manuel
机构
[1] Univ Jaen, Dept Comp Sci, Linares 23700, Jaen, Spain
[2] Univ Granada, Dept Comp Sci & Artificial Intelligence, Granada 18071, Spain
关键词
training set selection; interpretability; precision; evolutionary algorithms; rule classification; decision trees;
D O I
10.1016/j.datak.2006.01.008
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The generation of predictive models is a frequent task in data mining with the objective of generating highly precise and interpretable models. The data reduction is an interesting preprocessing approach that can allow us to obtain predictive models with these characteristics in large size data sets. In this paper, we analyze the rule classification model based on decision trees using a training selected set via evolutionary stratified instance selection. This method faces the scaling problem that appears in the evaluation of large size data sets, and the trade off interpretability-precision of the generated models. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:90 / 108
页数:19
相关论文
共 41 条
[1]  
Aguilar J. S., 2001, Intelligent Data Analysis, V5, P405
[2]  
AHA DW, 1991, MACH LEARN, V6, P37, DOI 10.1007/BF00153759
[3]  
Anderson TW., 1984, INTRO MULTIVARIATE S
[4]  
[Anonymous], P 4 INT WORKSH MACH
[5]  
Back T., 1996, EVOLUTIONARY ALGORIT
[6]  
BOHANEC M, 1994, MACH LEARN, V15, P223, DOI 10.1023/A:1022685808937
[7]   Simplifying decision trees: A survey [J].
Breslow, LA ;
Aha, DW .
KNOWLEDGE ENGINEERING REVIEW, 1997, 12 (01) :1-40
[8]   Stratification for scaling up evolutionary prototype selection [J].
Cano, JR ;
Herrera, F ;
Lozano, M .
PATTERN RECOGNITION LETTERS, 2005, 26 (07) :953-963
[9]   Using evolutionary algorithms as instance selection for data reduction in KDD: An experimental study [J].
Cano, JR ;
Herrera, F ;
Lozano, M .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2003, 7 (06) :561-575
[10]  
Eshelman L. J., 1991, FDN GENETIC ALGORITH, V1, P265, DOI DOI 10.1016/B978-0-08-050684-5.50020-3