Automatic sets and Delone sets

被引:6
作者
Barbé, A [1 ]
von Haeseler, F [1 ]
机构
[1] Katholieke Univ Leuven, Dept Elect Engn, B-3001 Louvain, Belgium
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2004年 / 37卷 / 13期
关键词
D O I
10.1088/0305-4470/37/13/007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Automatic sets D subset of Z(m) are characterized by having a finite number of decimations. They are equivalently generated by fixed points of certain substitution systems, or by certain finite automata. As examples, two-dimensional versions of the Thue-Morse, Baum-Sweet, Rudin-Shapiro and paperfolding sequences are presented. We give a necessary and sufficient condition for an automatic set D subset of Z(m) to be a Delone set in R-m. The result is then extended to automatic sets that are defined as fixed points of certain substitutions. The morphology of automatic sets is discussed by means of examples.
引用
收藏
页码:4017 / 4038
页数:22
相关论文
共 12 条
[1]  
Allouche J.-P., 1987, Expo. Math., V5, P239
[2]  
Allouche J.-P., 2003, Automatic Sequences: Theory, Applications, Generalizations
[3]   Automaticity of double sequences generated by one-dimensional linear cellular automata [J].
Allouche, JP ;
vonHaeseler, F ;
Peitgen, HO ;
Petersen, A ;
Skordev, G .
THEORETICAL COMPUTER SCIENCE, 1997, 188 (1-2) :195-209
[4]   QUASI-CRYSTAL ISING CHAIN AND AUTOMATA THEORY [J].
ALLOUCHE, JP ;
FRANCE, MM .
JOURNAL OF STATISTICAL PHYSICS, 1986, 42 (5-6) :809-821
[5]  
Baake M., 2000, Directions in Mathematical Quasicrystals
[6]   Limit sets of automatic sequences [J].
Barbé, A ;
von Haeseler, F .
ADVANCES IN MATHEMATICS, 2003, 175 (02) :169-196
[7]   Automaticity of coarse-graining invariant orbits of one-dimensional linear cellular automata [J].
Barbé, A ;
Peitgen, HO ;
Skordev, G .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (01) :67-95
[8]   Lattice substitution systems and model sets [J].
Lee, JY ;
Moody, RV .
DISCRETE & COMPUTATIONAL GEOMETRY, 2001, 25 (02) :173-201
[9]  
Lothaire M, 2002, Encyclopedia Math. Appl.
[10]  
Senechal M., 1995, Quasicrystals and Geometry