INVESTIGATION OF ADVANCED DIVERTOR MAGNETIC CONFIGURATION FOR DEMO TOKAMAK REACTOR

被引:14
作者
Asakura, Nobuyuki [1 ]
Shinya, Kichiro [2 ]
Tobita, Kenji [1 ]
Hoshino, Kazuo [1 ]
Shimizu, Katsuhiro [3 ]
Utoh, Hiroyasu [1 ]
Someya, Youji [1 ]
Nakamura, Makoto [1 ]
Ohno, Noriyashu [4 ]
Kobayashi, Masahiro [5 ]
Tanaka, Hirohiko [5 ]
机构
[1] Japan Atom Energy Agcy, Obuchi, Rokkasho 0393212, Japan
[2] Toshiba Nucl Engn Serv Co, Isogo Ku, Yokohama, Kanagawa 258523, Japan
[3] Japan Atom Energy Agcy, Naka, Ibaraki 3110193, Japan
[4] Nagoya Univ, Grad Sch Engn, Nagoya, Aichi 4648603, Japan
[5] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu 5095292, Japan
关键词
Magnetoplasma;
D O I
10.13182/FST13-A16876
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Design study of the magnetic configuration and divertor geometry for the "advanced divertor" in a Demo tokamak reactor is summarized. Equilibrium calculation code, TOSCA, was developed for the super-X divertor (SXD) design by introducing two parameters, i.e. location of the super-X null and a ratio of the poloidal magnetic fluxes at the super-X null to that at the separatrix. SXD has an advantage to increase connection length from the divertor null point to the divertor target (L-//(div)), which is 1.6-1.8 times larger with increasing f(SX), compared to that in the conventional long-leg divertor. Whereas flux expansion near the super-X null was increased, increase in the target wet area (A(wet)) was small. Snowflake divertor (SFD) magnetic configuration was produced by adjusting PFC locations and the current distribution. L-//(div) was largely increased near the SF null in the conventional divertor size. Key issues remain: control scenario for SF-null and high plasma shaping should be developed, and appropriate SFD design is necessary. For the advanced divertor design, divertor coils inside TFC are preferable due to the maximum current and size.
引用
收藏
页码:70 / 75
页数:6
相关论文
共 8 条
[1]  
Asakura N., 2010, J PLASMA FUSION RES, V9, P136
[2]   Simulation Study of an Extended Divertor Leg for Heat Control in the SlimCS DEMO Reactor [J].
Hoshino, K. ;
Shimizu, K. ;
Asakura, N. ;
Takizuka, T. ;
Nakamura, M. ;
Tobita, K. .
CONTRIBUTIONS TO PLASMA PHYSICS, 2012, 52 (5-6) :550-554
[3]   Simulation study for divertor design to handle huge exhaust power in the SlimCS DEMO reactor [J].
Kawashima, H. ;
Shimizu, K. ;
Takizuka, T. ;
Tobita, K. ;
Nishio, S. ;
Sakurai, S. ;
Takenaga, H. .
NUCLEAR FUSION, 2009, 49 (06)
[4]   On heat loading, novel divertors, and fusion reactors [J].
Kotschenreuther, M. ;
Valanju, P. M. ;
Mahajan, S. M. ;
Wiley, J. C. .
PHYSICS OF PLASMAS, 2007, 14 (07)
[5]   The magnetic field structure of a snowflake divertor [J].
Ryutov, D. D. ;
Cohen, R. H. ;
Rognlien, T. D. ;
Umansky, M. V. .
PHYSICS OF PLASMAS, 2008, 15 (09)
[6]   Geometrical properties of a "snowflake" divertor [J].
Ryutov, D. D. .
PHYSICS OF PLASMAS, 2007, 14 (06)
[7]   Compact DEMO, SlimCS: design progress and issues [J].
Tobita, K. ;
Nishio, S. ;
Enoeda, M. ;
Kawashima, H. ;
Kurita, G. ;
Tanigawa, H. ;
Nakamura, H. ;
Honda, M. ;
Saito, A. ;
Sato, S. ;
Hayashi, T. ;
Asakura, N. ;
Sakurai, S. ;
Nishitani, T. ;
Ozeki, T. ;
Ando, M. ;
Ezato, K. ;
Hamamatsu, K. ;
Hirose, T. ;
Hoshino, T. ;
Ide, S. ;
Inoue, T. ;
Isono, T. ;
Liu, C. ;
Kakudate, S. ;
Kawamura, Y. ;
Mori, S. ;
Nakamichi, M. ;
Nishi, H. ;
Nozawa, T. ;
Ochiai, K. ;
Ogiwara, H. ;
Oyama, N. ;
Sakamoto, K. ;
Sakamoto, Y. ;
Seki, Y. ;
Shibama, Y. ;
Shimizu, K. ;
Suzuki, S. ;
Takahashi, K. ;
Tanigawa, H. ;
Tsuru, D. ;
Yamanishi, T. ;
Yoshida, T. .
NUCLEAR FUSION, 2009, 49 (07)
[8]   Conceptual study of vertical sector transport maintenance for DEMO fusion reactor [J].
Utoh, Hiroyasu ;
Tobita, Kenji ;
Someya, Youji ;
Takase, Haruhiko .
FUSION ENGINEERING AND DESIGN, 2012, 87 (7-8) :1409-1413