Consistency of Temperature and Precipitation Extremes across Various Global Gridded In Situ and Reanalysis Datasets

被引:154
作者
Donat, Markus G. [1 ,2 ]
Sillmann, Jana [3 ]
Wild, Simon [4 ]
Alexander, Lisa V. [1 ,2 ]
Lippmann, Tanya [1 ,2 ]
Zwiers, Francis W. [5 ]
机构
[1] Univ New S Wales, Climate Change Res Ctr, Sydney, NSW 2052, Australia
[2] Univ New S Wales, ARC Ctr Excellence Climate Syst Sci, Sydney, NSW 2052, Australia
[3] Univ Victoria, Victoria, BC, Canada
[4] Univ Birmingham, Sch Geog Earth & Environm Sci, Birmingham, W Midlands, England
[5] Pacific Climate Impacts Consortium, Victoria, BC, Canada
基金
澳大利亚研究理事会;
关键词
MONITORING CHANGES; CLIMATE EXTREMES; TRENDS; INDEXES;
D O I
10.1175/JCLI-D-13-00405.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Changes in climate extremes are often monitored using global gridded datasets of climate extremes based on in situ observations or reanalysis data. This study assesses the consistency of temperature and precipitation extremes between these datasets. Both the temporal evolution and spatial patterns of annual extremes of daily values are compared across multiple global gridded datasets of in situ observations and reanalyses to make inferences on the robustness of the obtained results. While normalized time series generally compare well, the actual values of annual extremes of daily data differ systematically across the different datasets. This is partly related to different computational approaches when calculating the gridded fields of climate extremes. There is strong agreement between extreme temperatures in the different in situ based datasets. Larger differences are found for temperature extremes from the reanalyses, particularly during the presatellite era, indicating that reanalyses are most consistent with purely observational-based analyses of changes in climate extremes for the three most recent decades. In terms of both temporal and spatial correlations, the ECMWF reanalyses tend to show greater agreement with the gridded in situ-based datasets than the NCEP reanalyses and Japanese 25-year Reanalysis Project (JRA-25). Extreme precipitation is characterized by higher temporal and spatial variability than extreme temperatures, and there is less agreement between different datasets than for temperature. However, reasonable agreement between the gridded observational precipitation datasets remains. Extreme precipitation patterns and time series from reanalyses show lower agreement but generally still correlate significantly.
引用
收藏
页码:5019 / 5035
页数:17
相关论文
共 40 条
[1]   Global observed changes in daily climate extremes of temperature and precipitation [J].
Alexander, LV ;
Zhang, X ;
Peterson, TC ;
Caesar, J ;
Gleason, B ;
Tank, AMGK ;
Haylock, M ;
Collins, D ;
Trewin, B ;
Rahimzadeh, F ;
Tagipour, A ;
Kumar, KR ;
Revadekar, J ;
Griffiths, G ;
Vincent, L ;
Stephenson, DB ;
Burn, J ;
Aguilar, E ;
Brunet, M ;
Taylor, M ;
New, M ;
Zhai, P ;
Rusticucci, M ;
Vazquez-Aguirre, JL .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2006, 111 (D5)
[2]  
[Anonymous], NCEP NCAR REAN PROBL
[3]  
[Anonymous], 1975, J. Econ
[4]   Can climate trends be calculated from reanalysis data? [J].
Bengtsson, L ;
Hagemann, S ;
Hodges, KI .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2004, 109 (D11) :D111111-8
[5]   On the evaluation of temperature trends in the tropical troposphere [J].
Bengtsson, Lennart ;
Hodges, Kevin I. .
CLIMATE DYNAMICS, 2011, 36 (3-4) :419-430
[6]   Large-scale changes in observed daily maximum and minimum temperatures: Creation and analysis of a new gridded data set [J].
Caesar, J ;
Alexander, L ;
Vose, R .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2006, 111 (D5)
[7]   How well does the ERA-Interim reanalysis replicate trends in extremes of surface temperature across Europe? [J].
Cornes, R. C. ;
Jones, P. D. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2013, 118 (18) :10262-10276
[8]   The ERA-Interim reanalysis: configuration and performance of the data assimilation system [J].
Dee, D. P. ;
Uppala, S. M. ;
Simmons, A. J. ;
Berrisford, P. ;
Poli, P. ;
Kobayashi, S. ;
Andrae, U. ;
Balmaseda, M. A. ;
Balsamo, G. ;
Bauer, P. ;
Bechtold, P. ;
Beljaars, A. C. M. ;
van de Berg, L. ;
Bidlot, J. ;
Bormann, N. ;
Delsol, C. ;
Dragani, R. ;
Fuentes, M. ;
Geer, A. J. ;
Haimberger, L. ;
Healy, S. B. ;
Hersbach, H. ;
Holm, E. V. ;
Isaksen, L. ;
Kallberg, P. ;
Koehler, M. ;
Matricardi, M. ;
McNally, A. P. ;
Monge-Sanz, B. M. ;
Morcrette, J. -J. ;
Park, B. -K. ;
Peubey, C. ;
de Rosnay, P. ;
Tavolato, C. ;
Thepaut, J. -N. ;
Vitart, F. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (656) :553-597
[9]   Comments on "Reanalyses Suitable for Characterizing Long-Term Trends" [J].
Dee, D. P. ;
Kaellen, E. ;
Simmons, A. J. ;
Haimberger, L. .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2011, 92 (01) :65-70
[10]   Global Land-Based Datasets for Monitoring Climatic Extremes [J].
Donat, M. G. ;
Alexander, L. V. ;
Yang, H. ;
Durre, I. ;
Vose, R. ;
Caesar, J. .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2013, 94 (07) :997-1006