Constructing first order stationary autoregressive models via latent processes

被引:37
作者
Pitt, MK
Chatfield, C
Walker, SG [1 ]
机构
[1] Univ Bath, Sch Math Sci, Bath BA2 7AY, Avon, England
[2] Univ Warwick, Coventry CV4 7AL, W Midlands, England
关键词
autocorrelation function; autoregressive process; EM algorithm; exponential family; latent process; stationary time series;
D O I
10.1111/1467-9469.00311
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
First order stationary autoregressive (AR(1)) models are introduced for which there exists a linear relation between the expectations of the observations, and where it is readily possible to arrange the marginal distributions to be other than normal.
引用
收藏
页码:657 / 663
页数:7
相关论文
共 15 条
[1]   Normal inverse Gaussian distributions and stochastic volatility modelling [J].
BarndorffNielsen, OE .
SCANDINAVIAN JOURNAL OF STATISTICS, 1997, 24 (01) :1-13
[2]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[3]  
Feller W., 1971, INTRO PROBABILITY TH
[4]   BAYESIAN ANALYSIS OF SOME NONPARAMETRIC PROBLEMS [J].
FERGUSON, TS .
ANNALS OF STATISTICS, 1973, 1 (02) :209-230
[5]   1ST-ORDER AUTOREGRESSIVE GAMMA-SEQUENCES AND POINT-PROCESSES [J].
GAVER, DP ;
LEWIS, PAW .
ADVANCES IN APPLIED PROBABILITY, 1980, 12 (03) :727-745
[6]  
JACOBS PA, 1977, ADV APPL PROBAB, V12, P87
[8]  
JORGENSEN B, 1986, SCAND J STAT, V13, P187
[9]  
JORGENSEN B, 1987, J ROY STAT SOC B MET, V49, P127
[10]   Stationary time series models with exponential dispersion model margins [J].
Jorgensen, B ;
Song, PXK .
JOURNAL OF APPLIED PROBABILITY, 1998, 35 (01) :78-92