Hybridization interactions between probesets in short oligo microarrays lead to spurious correlations

被引:112
作者
Okoniewski, Michal J. [1 ]
Miller, Crispin J. [1 ]
机构
[1] Univ Manchester, Paterson Inst Canc Res, Manchester M20 4BX, Lancs, England
关键词
D O I
10.1186/1471-2105-7-276
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Microarrays measure the binding of nucleotide sequences to a set of sequence specific probes. This information is combined with annotation specifying the relationship between probes and targets and used to make inferences about transcript- and, ultimately, gene expression. In some situations, a probe is capable of hybridizing to more than one transcript, in others, multiple probes can target a single sequence. These 'multiply targeted' probes can result in nonindependence between measured expression levels. Results: An analysis of these relationships for Affymetrix arrays considered both the extent and influence of exact matches between probe and transcript sequences. For the popular HGU133A array, approximately half of the probesets were found to interact in this way. Both real and simulated expression datasets were used to examine how these effects influenced the expression signal. It was found not only to lead to increased signal strength for the affected probesets, but the major effect is to significantly increase their correlation, even in situations when only a single probe from a probeset was involved. By building a network of probe-probeset-transcript relationships, it is possible to identify families of interacting probesets. More than 10% of the families contain members annotated to different genes or even different Unigene clusters. Within a family, a mixture of genuine biological and artefactual correlations can occur. Conclusion: Multiple targeting is not only prevalent, but also significant. The ability of probesets to hybridize to more than one gene product can lead to false positives when analysing gene expression. Comprehensive annotation describing multiple targeting is required when interpreting array data.
引用
收藏
页数:14
相关论文
共 32 条
[1]   LGL: Creating a map of protein function with an algorithm for visualizing very large biological networks [J].
Adai, AT ;
Date, SV ;
Wieland, S ;
Marcotte, EM .
JOURNAL OF MOLECULAR BIOLOGY, 2004, 340 (01) :179-190
[2]  
AI M, 2005, NUCLEIC ACIDS RES, V33, pE175
[3]  
[Anonymous], 2002, AFFYMETRIX STAT ALGO
[4]  
Attwood T K, 2002, Biotechnol Annu Rev, V8, P1, DOI 10.1016/S1387-2656(02)08003-1
[5]   An overview of ensembl [J].
Birney, E ;
Andrews, TD ;
Bevan, P ;
Caccamo, M ;
Chen, Y ;
Clarke, L ;
Coates, G ;
Cuff, J ;
Curwen, V ;
Cutts, T ;
Down, T ;
Eyras, E ;
Fernandez-Suarez, XM ;
Gane, P ;
Gibbins, B ;
Gilbert, J ;
Hammond, M ;
Hotz, HR ;
Iyer, V ;
Jekosch, K ;
Kahari, A ;
Kasprzyk, A ;
Keefe, D ;
Keenan, S ;
Lehvaslaiho, H ;
McVicker, G ;
Melsopp, C ;
Meidl, P ;
Mongin, E ;
Pettett, R ;
Potter, S ;
Proctor, G ;
Rae, M ;
Searle, S ;
Slater, G ;
Smedley, D ;
Smith, J ;
Spooner, W ;
Stabenau, A ;
Stalker, J ;
Storey, R ;
Ureta-Vidal, A ;
Woodwark, KC ;
Cameron, G ;
Durbin, R ;
Cox, A ;
Hubbard, T ;
Clamp, M .
GENOME RESEARCH, 2004, 14 (05) :925-928
[6]  
Butte A J, 2000, Pac Symp Biocomput, P418
[7]   Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks [J].
Butte, AJ ;
Tamayo, P ;
Slonim, D ;
Golub, TR ;
Kohane, IS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (22) :12182-12186
[8]   Redefinition of affymetrix probe sets by sequence overlap with cDNA microarray probes reduces cross-platform inconsistencies in cancer-associated gene expression measurements [J].
Carter, SL ;
Eklund, AC ;
Mecham, BH ;
Kohane, IS ;
Szallasi, Z .
BMC BIOINFORMATICS, 2005, 6 (1)
[9]  
*CONS GO, 2004, NUCLEIC ACIDS RES, pD258
[10]   Alternative mapping of probes to genes for Affymetrix chips -: art. no. 111 [J].
Gautier, L ;
Moller, M ;
Friis-Hansen, L ;
Knudsen, S .
BMC BIOINFORMATICS, 2004, 5 (1)