Differential effects of interleukin-6 and-10 on skeletal muscle and liver insulin action in vivo

被引:403
作者
Kim, HJ
Higashimori, T
Park, SY
Choi, H
Dong, JY
Kim, YJ
Noh, HL
Cho, YR
Cline, G
Kim, YB
Kim, JK
机构
[1] Yale Univ, Sch Med, Dept Internal Med, Sect Endocrinol & Metab,Anlyan Ctr, New Haven, CT 06520 USA
[2] Harvard Univ, Sch Med, Beth Israel Deaconess Med Ctr, Div Endocrinol Diabet & Metab, Boston, MA 02115 USA
关键词
D O I
10.2337/diabetes.53.4.1060
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The circulating level of the inflammatory cytokine interleukin (IL)-6 is elevated in various insulin-resistant states including type 2 diabetes, obesity, cancer, and HIV-associated lipodystrophy. To determine the role of IL-6 in the development of insulin resistance, we examined the effects of IL-6 treatment on whole-body insulin action and glucose metabolism in vivo during hyperinsulinemic-euglycemic clamps in awake mice. Pretreatment of IL-6 blunted insulin's ability to suppress hepatic glucose production and insulin-stimulated insulin receptor substrate (IRS)-2-associated phosphatidylinositol (PI) 3-kinase activity in liver. Acute IL-6 treatment also reduced insulin-stimulated glucose uptake in skeletal muscle, and this was associated with defects in insulin-stimulated IRS-1-associated PI 3-kinase activity and increases in fatty acyl-CoA levels in skeletal muscle. In contrast, we found that co-treatment of IL-10, a predominantly anti-inflammatory cytokine, prevented IL-6-induced defects in hepatic insulin action and signaling activity. Additionally, IL-10 co-treatment protected skeletal muscle from IL-6 and lipid-induced defects in insulin action and signaling activity, and these effects were associated with decreases in intramuscular fatty acyl-CoA levels. This is the first study to demonstrate that inflammatory cytokines IL-6 and IL-10 alter hepatic and skeletal muscle insulin action in vivo, and the mechanism may involve cytokine-induced alteration in intracellular fat contents. These findings implicate an important role of inflammatory cytokines in the pathogenesis of insulin resistance.
引用
收藏
页码:1060 / 1067
页数:8
相关论文
共 57 条
  • [1] MOLECULAR-CLONING OF APRF, A NOVEL IFN-STIMULATED GENE FACTOR-3 P91-RELATED TRANSCRIPTION FACTOR INVOLVED IN THE GP130-MEDIATED SIGNALING PATHWAY
    AKIRA, S
    NISHIO, Y
    INOUE, M
    WANG, XJ
    WEI, S
    MATSUSAKA, T
    YOSHIDA, K
    SUDO, T
    NARUTO, M
    KISHIMOTO, T
    [J]. CELL, 1994, 77 (01) : 63 - 71
  • [2] RATES AND TISSUE SITES OF NON-INSULIN-MEDIATED AND INSULIN-MEDIATED GLUCOSE-UPTAKE IN HUMANS
    BARON, AD
    BRECHTEL, G
    WALLACE, P
    EDELMAN, SV
    [J]. AMERICAN JOURNAL OF PHYSIOLOGY, 1988, 255 (06): : E769 - E774
  • [3] Obesity
    Bjorntorp, P
    [J]. LANCET, 1997, 350 (9075) : 423 - 426
  • [4] BLIGH EG, 1959, CAN J BIOCHEM PHYS, V37, P911
  • [5] Effects of acute changes of plasma free fatty acids on intramyocellular fat content and insulin resistance in healthy subjects
    Boden, G
    Lebed, B
    Schatz, M
    Homko, C
    Lemieux, S
    [J]. DIABETES, 2001, 50 (07) : 1612 - 1617
  • [6] Boden G., 2001, Curr.Opin.Endocrinol.Diabetes, V8, P235
  • [7] A syndrome of peripheral lipodystrophy, hyperlipidaemia and insulin resistance in patients receiving HIV protease inhibitors
    Carr, A
    Samaras, K
    Burton, S
    Law, M
    Freund, J
    Chisholm, DJ
    Cooper, DA
    [J]. AIDS, 1998, 12 (07) : F51 - F58
  • [8] Five-hour fatty acid elevation increases muscle lipids and impairs glycogen synthesis in the rat
    Chalkley, SM
    Hettiarachchi, M
    Chisholm, DJ
    Kraegen, EW
    [J]. METABOLISM-CLINICAL AND EXPERIMENTAL, 1998, 47 (09): : 1121 - 1126
  • [9] Impaired glucose transport as a cause of decreased insulin-stimulated muscle glycogen synthesis in type 2 diabetes
    Cline, GW
    Petersen, KF
    Krssak, M
    Shen, J
    Hundal, RS
    Trajanoski, Z
    Inzucchi, S
    Dresner, A
    Rothman, DL
    Shulman, GI
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 1999, 341 (04) : 240 - 246
  • [10] THE TRIUMVIRATE - BETA-CELL, MUSCLE, LIVER - A COLLUSION RESPONSIBLE FOR NIDDM
    DEFRONZO, RA
    [J]. DIABETES, 1988, 37 (06) : 667 - 687