Molecular genetics of dopa-responsive dystonia

被引:72
作者
Ichinose, H [1 ]
Suzuki, T [1 ]
Inagaki, H [1 ]
Ohye, T [1 ]
Nagatsu, T [1 ]
机构
[1] Fujita Hlth Univ, Inst Comprehens Med Sci, Aichi 4701192, Japan
关键词
dopa-responsive dystonia; GTP cyclohydrolase I; tyrosine hydroxylase;
D O I
10.1515/BC.1999.175
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The causative genes of two types of hereditary dopa-responsive dystonia (DRD) due to dopamine (DA) deficiency in the nigrostriatum DA neurons have been elucidated, Autosomal dominant DRD (AD-DRD) was originally described by Segawa as hereditary progressive dystonia with marked diurnal fluctuation (HPD). We cloned the human GTP cyclohydrolase I (GCH1) gene, and mapped the gene to chromosome 14q22.1-q22.2 within the HPD/DRD locus, which had been identified by linkage analysis. GCH1 is the rate-limiting enzyme for the biosynthesis of tetrahydrobiopterin (BH4), the cofactor for tyrosine hydroxylase (TH), which is the first and rate-limiting enzyme of DA synthesis, We proved that the GCH1 gene is the causative gene for HPD/DRD based on the identification of mutations of the gene in the patients and decreases in the enzyme activity expressed in mononuclear blood cells to 2-20% of the normal value. About 60 different mutations (missense, nonsense, and frameshift mutations) in the coding region or in the exon-intron junctions of the GCH1 gene have been reported in patients with AD-DRD all over the world, Recent findings indicate that the decreased GCH1 activity in AD-DRD may be caused by the negative interaction of the mutated subunit with the wild-type one, i.e., a dominant negative effect, and/or by decreases in the levels of GCH1 mRNA and protein caused by inactivation of one allele of the GCH1 gene. Autosomal recessive DRD (AR-DRD) with Segawa's syndrome was discovered in Germany, The AR-DRD locus was mapped to chromosome 11p15.5 in the chromosomal site of the TH gene. In the AR-DRD with Segawa's syndrome, a point mutation in TH (Gln381Lys) resulted in a pronounced decrease in TH activity to about 15% of that of the wild type. Several missense mutations in the TH gene have been found in AR-DRD in Europe, The phenotype of AR-DRD with the Leu205Pro mutation in the TH gene, which produces a severe decrease in TH activity to 1.5% of that of the wild type, was severe, not dystonia/Segawa's syndrome, but early-onset parkinsonism. However, a marked improvement of all clinical symptoms with a low dose of L-dopa was reported in AR-DRD/parkinsonism patients. These findings on DRD indicate that the nigrostriatal DA neurons may be most susceptible to the decreases in GCH1 activity, BH4 level, TH activity, and DA level, and that DRD is the DA deficiency without neuronal death in contrast to juvenile parkinsonism or Parkinson's disease with DA cell death.
引用
收藏
页码:1355 / 1364
页数:10
相关论文
共 77 条
[1]   Dopa-responsive dystonia in British patients: New mutations of the GTP-cyclohydrolase I gene and evidence for genetic heterogeneity [J].
Bandmann, O ;
Nygaard, TG ;
Surtees, R ;
Marsden, CD ;
Wood, NW ;
Harding, AE .
HUMAN MOLECULAR GENETICS, 1996, 5 (03) :403-406
[2]   Dopa-responsive dystonia: A clinical and molecular genetic study [J].
Bandmann, O ;
Valente, EM ;
Holmans, P ;
Surtees, RAH ;
Walters, JH ;
Wevers, RA ;
Marsden, CD ;
Wood, NW .
ANNALS OF NEUROLOGY, 1998, 44 (04) :649-656
[3]  
BARTHOLOME K, 1998, ADV PHARM CATECHOLAM, P48
[4]  
BEYER K, 1997, LANCET, V349, P420
[5]   Reduced lymphoblast neopterin detects GTP cyclohydrolase dysfunction in dopa-responsive dystonia [J].
Bezin, L ;
Nygaard, TG ;
Neville, JD ;
Shen, H ;
Levine, RA .
NEUROLOGY, 1998, 50 (04) :1021-1027
[6]   INCREASE OF GTP CYCLOHYDROLASE-I ACTIVITY IN MONONUCLEAR BLOOD-CELLS BY STIMULATION - DETECTION OF HETEROZYGOTES OF GTP CYCLOHYDROLASE-I DEFICIENCY [J].
BLAU, N ;
JOLLER, P ;
ATARES, M ;
CARDESAGARCIA, J ;
NIEDERWIESER, A .
CLINICA CHIMICA ACTA, 1985, 148 (01) :47-52
[7]  
Bräutigam C, 1998, CLIN CHEM, V44, P1897
[8]  
BRIQUE S, 1997, MOVEMENT DISORDER S1, V12, P253
[9]   Tardive dyskinesia in dopa-responsive dystonia: A reappraisal of the dopamine hypothesis of tardive dyskinesia [J].
de la Fuente-Fernandez, R .
NEUROLOGY, 1998, 50 (04) :1134-1135
[10]  
Dumas S, 1996, J NEUROCHEM, V67, P19