Functions of human replication protein A (RPA): From DNA replication to DNA damage and stress responses

被引:282
作者
Zou, Yue [1 ]
Liu, Yiyong [1 ]
Wu, Xiaoming [1 ]
Shell, Steven M. [1 ]
机构
[1] E Tennessee State Univ, James H Quillen Coll Med, Dept Biochem & Mol Biol, Johnson City, TN 37614 USA
关键词
D O I
10.1002/jcp.20622
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Human replication protein A (RIPA), a heterotrimeric protein complex, was originally defined as a eukaryotic single-stranded DNA binding (SSB) protein essential for the in vitro replication of simian virus 40 (SV40) DNA. Since then RPA has been found to be an indispensable player in almost all DNA metabolic pathways such as, but not limited to, DNA replication, DNA repair, recombination, cell cycle, and DNA damage checkpoints. Defects in these cellular reactions may lead to genome instability and, thus, the diseases with a high potential to evolve into cancer. This extensive involvement of RPA in various cellular activities implies a potential modulatory role for RPA in cellular responses to genotoxic insults. in support, RPA is hyperphosphorylated upon DNA damage or replication stress by checkpoint kinases including ataxia telangiectasia mutated (ATM), ATR (ATM and Rad3-related), and DNA-dependent protein kinase (DNA-PK). The hyperphosphorylation may change the functions of RPA and, thus, the activities of individual pathways in which it is involved. Indeed, there is growing evidence that hyperphosphorylation alters RPA-DNA and RPA-protein interactions. In addition, recent advances in understanding the molecular basis of the stress-induced modulation of RPA functions demonstrate that RPA undergoes a subtle structural change upon hyperphosphorylation, revealing a structure-based modulatory mechanism. Furthermore, given the crucial roles of RPA in a broad range of cellular processes, targeting RPA to inhibit its specific functions, particularly in DNA replication and repair, may serve a valuable strategy for drug development towards better cancer treatment.
引用
收藏
页码:267 / 273
页数:7
相关论文
共 107 条
[1]   MAMMALIAN DNA NUCLEOTIDE EXCISION-REPAIR RECONSTITUTED WITH PURIFIED PROTEIN-COMPONENTS [J].
ABOUSSEKHRA, A ;
BIGGERSTAFF, M ;
SHIVJI, MKK ;
VILPO, JA ;
MONCOLLIN, V ;
PODUST, VN ;
PROTIC, M ;
HUBSCHER, U ;
EGLY, JM ;
WOOD, RD .
CELL, 1995, 80 (06) :859-868
[2]   Cell cycle checkpoint signaling through the ATM and ATR kinases [J].
Abraham, RT .
GENES & DEVELOPMENT, 2001, 15 (17) :2177-2196
[3]  
Andrews BJ, 2004, MOL CANCER THER, V3, P385
[4]   Reversible protein phosphorylation modulates nucleotide excision repair of damaged DNA by human cell extracts [J].
Ariza, RR ;
Keyse, SM ;
Moggs, JG ;
Wood, RD .
NUCLEIC ACIDS RESEARCH, 1996, 24 (03) :433-440
[5]   MIRA - Minimally Invasive Robotics Association: a new society for surgeons, radiologists, engineers and computer scientists involved with telerobotic surgery [J].
Ballantyne, GH .
INTERNATIONAL JOURNAL OF MEDICAL ROBOTICS AND COMPUTER ASSISTED SURGERY, 2005, 1 (02) :5-5
[6]   Disruption of the Rad9/Rad1/Hus1 (9-1-1) complex leads to checkpoint signaling and replication defects [J].
Bao, SL ;
Lu, T ;
Wang, X ;
Zheng, HY ;
Wang, LE ;
Wei, QY ;
Hittelman, WN ;
Li, L .
ONCOGENE, 2004, 23 (33) :5586-5593
[7]   Checking on DNA damage in S phase [J].
Bartek, J ;
Lukas, C ;
Lukas, J .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2004, 5 (10) :792-804
[8]   DNA stimulates Mec1-mediated phosphorylation of replication protein A [J].
Bartrand, AJ ;
Iyasu, D ;
Brush, GS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (25) :26762-26767
[9]   Functional analysis of the four DNA binding domains of replication protein A - The role of RPA2 in ssDNA binding [J].
Bastin-Shanower, SA ;
Brill, SJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (39) :36446-36453
[10]   The phosphorylation domain of the 32-kDa subunit of replication protein a (RPA) modulates RPA-DNA interactions - Evidence for an intersubunit interaction [J].
Binz, SK ;
Lao, Y ;
Lowry, DF ;
Wold, MS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (37) :35584-35591