Furcatin hydrolase from Viburnum furcatum blume is a novel disaccharide-specific acuminosidase in glycosyl hydrolase family 1

被引:23
作者
Ahn, YO [1 ]
Mizutani, M [1 ]
Saino, H [1 ]
Sakata, K [1 ]
机构
[1] Kyoto Univ, Inst Chem Res, Kyoto 6110011, Japan
关键词
D O I
10.1074/jbc.M311379200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Furcatin hydrolase (FH) is a unique disaccharide-specific acuminosidase, which hydrolyzes furcatin(p-allylphenyl 6-O-beta-D-apiofuranosyl-beta-D-glucopyranoside (acuminoside)) into p-allylphenol and the disaccharide acuminose. We have isolated a cDNA coding for FH from Viburnum furcatum leaves. The open reading frame in the cDNA encoded a 538-amino acid polypeptide including a putative chloroplast transit peptide. The deduced protein showed 64% identity with tea leaf beta-primeverosidase, which is another disaccharide glycosidase specific to beta-primeverosides (6-O-beta-D-xylopyranosyl-beta-D-glucopyranosides). The deduced FH also shared greater than 50% identity with various plant beta-glucosidases in glycosyl hydrolase family 1. The recombinant FH expressed in Escherichia coli exhibited the highest level of activity toward furcatin with a K-m value of 2.2 mM and specifically hydrolyzed the beta-glycosidic bond between p-allylphenol and acuminose, confirming FH as a disaccharide glycosidase. The FH also hydrolyzed beta-primeverosides and beta-vicianoside (6-O-alpha-L-arabinopyranosyl-beta-D-glucopyranoside) but poorly hydrolyzed beta-gentiobiosides (6-O-beta-D-glucopyranosyl-beta-D-glucopyranosides), indicating high substrate specificity for the disaccharide glycone moiety. The FH exhibited activity toward p-allylphenyl beta-D-glucopyranoside containing the same aglycone as furcatin but little activity toward the other beta-D-glucopyranosides. Stereochemical analysis using H-1 NMR spectroscopy revealed that FH is a retaining glycosidase. The subcellular localization of FH was analyzed using green fluorescent protein fused with the putative N-terminal signal peptide, indicating that FH is localized to the chloroplast. Phylogenetic analysis of plant beta-glucosidases revealed that FH clusters with beta-primeverosidase, and this suggests that the disaccharide glycosidases will form a new subfamily in glycosyl hydrolase family 1.
引用
收藏
页码:23405 / 23414
页数:10
相关论文
共 54 条
[1]  
ADACHI J, 1996, MOLPHY PROGRAMS MOL
[2]   THE CRYSTAL-STRUCTURE OF A CYANOGENIC BETA-GLUCOSIDASE FROM WHITE CLOVER, A FAMILY-1 GLYCOSYL HYDROLASE [J].
BARRETT, T ;
SURESH, CG ;
TOLLEY, SP ;
DODSON, EJ ;
HUGHES, MA .
STRUCTURE, 1995, 3 (09) :951-960
[3]  
Bones AM, 1996, PHYSIOL PLANTARUM, V97, P194, DOI 10.1111/j.1399-3054.1996.tb00497.x
[4]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[5]   RELEASE OF ACTIVE CYTOKININ BY A BETA-GLUCOSIDASE LOCALIZED TO THE MAIZE ROOT-MERISTEM [J].
BRZOBOHATY, B ;
MOORE, I ;
KRISTOFFERSEN, P ;
BAKO, L ;
CAMPOS, N ;
SCHELL, J ;
PALME, K .
SCIENCE, 1993, 262 (5136) :1051-1054
[6]  
Chang S. J., 1993, Plant Molecular Biology Reporter, V11, P113, DOI 10.1007/BF02670468
[7]   Engineered GFP as a vital reporter in plants [J].
Chiu, WL ;
Niwa, Y ;
Zeng, W ;
Hirano, T ;
Kobayashi, H ;
Sheen, J .
CURRENT BIOLOGY, 1996, 6 (03) :325-330
[8]  
Cicek M, 1999, BIOTECHNOL BIOENG, V63, P392, DOI 10.1002/(SICI)1097-0290(19990520)63:4&lt
[9]  
392::AID-BIT2&gt
[10]  
3.0.CO