Two energy scales and two distinct quasiparticle dynamics in the superconducting state of underdoped cuprates

被引:288
作者
Le Tacon, M.
Sacuto, A.
Georges, A.
Kotliar, G.
Gallais, Y.
Colson, D.
Forget, A.
机构
[1] Univ Paris 07, Lab Mat & Phenomenes Quant, UMR 7162 CNRS, F-75251 Paris, France
[2] Ecole Super Phys & Chim Ind Ville Paris, Lab Phys Solide, F-75231 Paris, France
[3] Ecole Polytech, Ctr Phys Theor, F-91128 Palaiseau, France
[4] CEA Saclay, Serv Phys Theor, F-91191 Gif Sur Yvette, France
[5] CEA Saclay, Serv Phys Theor, F-91191 Gif Sur Yvette, France
[6] Columbia Univ, Dept Phys, New York, NY 10027 USA
[7] Columbia Univ, Dept Appl Phys, New York, NY 10027 USA
[8] CEA Saclay, DSM DRECAM SPEC, Serv Phys Etat Condense, CNRS URA 2464, F-91191 Gif Sur Yvette, France
关键词
D O I
10.1038/nphys362
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The superconducting temperature T-c of hole-doped high-temperature superconductors has a dome-like shape as a function of hole concentration, with a maximum T-c at 'optimal' doping. On the underdoped side, the superconducting state is often described in terms of one energy scale, associated with the maximum of the d-wave gap (at the antinodes), which increases as the doping decreases. Here, we report electronic Raman scattering experiments that show a second energy scale in the gap function: the slope of the gap at the nodes, which decreases with decreasing doping. Our measurements also reveal two distinct quasiparticle dynamics; electronic coherence persists down to low doping levels at the nodes, whereas antinodal quasiparticles become incoherent. Using a sum-rule, we find that the low-frequency Raman response and the temperature dependence of the superfluid density, both controlled by nodal excitations, behave in a qualitatively similar manner with doping variation.
引用
收藏
页码:537 / 543
页数:7
相关论文
共 49 条
[1]   The physics behind high-temperature superconducting cuprates: the 'plain vanilla' version of RVB [J].
Anderson, PW ;
Lee, PA ;
Randeria, M ;
Rice, TM ;
Trivedi, N ;
Zhang, FC .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2004, 16 (24) :R755-R769
[2]   THE RESONATING VALENCE BOND STATE IN LA2CUO4 AND SUPERCONDUCTIVITY [J].
ANDERSON, PW .
SCIENCE, 1987, 235 (4793) :1196-1198
[3]   Gap and pseudogap evolution within the charge-ordering scenario for superconducting cuprates [J].
Benfatto, L ;
Caprara, S ;
Di Castro, C .
EUROPEAN PHYSICAL JOURNAL B, 2000, 17 (01) :95-102
[4]  
BERTINOTTI A, 1997, STUDIES HIGH TEMPERA, V23, P27
[5]   Surface impedance studies of YBCO [J].
Bonn, DA ;
Kamal, S ;
Bonakdarpour, A ;
Liang, RX ;
Hardy, WN ;
Homes, CC ;
Basov, DN ;
Timusk, T .
CZECHOSLOVAK JOURNAL OF PHYSICS, 1996, 46 :3195-3202
[6]   Superconducting gap in the presence of bilayer splitting in underdoped (Pb,Bi)2Sr2CaCu2O8+δ -: art. no. 140509 [J].
Borisenko, SV ;
Kordyuk, AA ;
Kim, TK ;
Legner, S ;
Nenkov, KA ;
Knupfer, M ;
Golden, MS ;
Fink, J ;
Berger, H ;
Follath, R .
PHYSICAL REVIEW B, 2002, 66 (14) :1-4
[7]  
BROUN DM, SUPERFLUID DENSITY
[8]   Electronic spectra and their relation to the (π,π) collective mode in high-Tc superconductors [J].
Campuzano, JC ;
Ding, H ;
Norman, MR ;
Fretwell, HM ;
Randeria, M ;
Kaminski, A ;
Mesot, J ;
Takeuchi, T ;
Sato, T ;
Yokoya, T ;
Takahashi, T ;
Mochiku, T ;
Kadowaki, K ;
Guptasarma, P ;
Hinks, DG ;
Konstantinovic, Z ;
Li, ZZ ;
Raffy, H .
PHYSICAL REVIEW LETTERS, 1999, 83 (18) :3709-3712
[9]   Hidden order in the cuprates [J].
Chakravarty, S ;
Laughlin, RB ;
Morr, DK ;
Nayak, C .
PHYSICAL REVIEW B, 2001, 63 (09)
[10]   Electronic Raman scattering in underdoped YBa2CU3O6.5 [J].
Chen, XK ;
Naeini, JG ;
Hewitt, KC ;
Irwin, JC ;
Liang, R ;
Hardy, WN .
PHYSICAL REVIEW B, 1997, 56 (02) :R513-R516