Heterotachy in mammalian promoter evolution

被引:88
作者
Taylor, Martin S.
Kai, Chikatoshi
Kawai, Jun
Carninci, Piero
Hayashizaki, Yoshihide
Semple, Colin A. M. [1 ]
机构
[1] RIKEN, Yokohama Inst, Genome Explorat Res Grp, Genom Sci Ctr, Yokohama, Kanagawa, Japan
[2] Univ Oxford, Wellcome Trust Ctr Human Genet, Oxford, England
[3] RIKEN, Genome Sci Lab, Discovery Res Inst, Wako Inst, Wako, Saitama 35101, Japan
[4] Western Gen Hosp, MRC, Human Genet Unit, Edinburgh, Midlothian, Scotland
来源
PLOS GENETICS | 2006年 / 2卷 / 04期
基金
英国惠康基金;
关键词
D O I
10.1371/journal.pgen.0020030
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
We have surveyed the evolutionary trends of mammalian promoters and upstream sequences, utilising large sets of experimentally supported transcription start sites ( TSSs). With 30,969 well- defined TSSs from mouse and 26,341 from human, there are sufficient numbers to draw statistically meaningful conclusions and to consider differences between promoter types. Unlike previous smaller studies, we have considered the effects of insertions, deletions, and transposable elements as well as nucleotide substitutions. The rate of promoter evolution relative to that of control sequences has not been consistent between lineages nor within lineages over time. The most pronounced manifestation of this heterotachy is the increased rate of evolution in primate promoters. This increase is seen across different classes of mutation, including substitutions and micro- indel events. We investigated the relationship between promoter and coding sequence selective constraint and suggest that they are generally uncorrelated. This analysis also identified a small number of mouse promoters associated with the immune response that are under positive selection in rodents. We demonstrate significant differences in divergence between functional promoter categories and identify a category of promoters, not associated with conventional protein- coding genes, that has the highest rates of divergence across mammals. We find that evolutionary rates vary both on a fine scale within mammalian promoters and also between different functional classes of promoters. The discovery of heterotachy in promoter evolution, in particular the accelerated evolution of primate promoters, has important implications for our understanding of human evolution and for strategies to detect primate- specific regulatory elements.
引用
收藏
页码:627 / 639
页数:13
相关论文
共 47 条
[1]   Microdeletions and microinsertions causing human genetic disease: Common mechanisms of mutagenesis and the role of local DNA sequence complexity [J].
Ball, EV ;
Stenson, PD ;
Abeysinghe, SS ;
Krawczak, M ;
Cooper, DN ;
Chuzhanova, NA .
HUMAN MUTATION, 2005, 26 (03) :205-213
[2]   Retroposed new genes out of the X in Drosophila [J].
Betrán, E ;
Thornton, K ;
Long, M .
GENOME RESEARCH, 2002, 12 (12) :1854-1859
[3]   Aligning multiple genomic sequences with the threaded blockset aligner [J].
Blanchette, M ;
Kent, WJ ;
Riemer, C ;
Elnitski, L ;
Smit, AFA ;
Roskin, KM ;
Baertsch, R ;
Rosenbloom, K ;
Clawson, H ;
Green, ED ;
Haussler, D ;
Miller, W .
GENOME RESEARCH, 2004, 14 (04) :708-715
[4]   Phylogenetic shadowing of primate sequences to find functional regions of the human genome [J].
Boffelli, D ;
McAuliffe, J ;
Ovcharenko, D ;
Lewis, KD ;
Ovcharenko, I ;
Pachter, L ;
Rubin, EM .
SCIENCE, 2003, 299 (5611) :1391-1394
[5]   LAGAN and Multi-LAGAN: Efficient tools for large-scale multiple alignment of genomic DNA [J].
Brudno, M ;
Do, CB ;
Cooper, GM ;
Kim, MF ;
Davydov, E ;
Green, ED ;
Sidow, A ;
Batzoglou, S .
GENOME RESEARCH, 2003, 13 (04) :721-731
[6]   The transcriptional landscape of the mammalian genome [J].
Carninci, P ;
Kasukawa, T ;
Katayama, S ;
Gough, J ;
Frith, MC ;
Maeda, N ;
Oyama, R ;
Ravasi, T ;
Lenhard, B ;
Wells, C ;
Kodzius, R ;
Shimokawa, K ;
Bajic, VB ;
Brenner, SE ;
Batalov, S ;
Forrest, ARR ;
Zavolan, M ;
Davis, MJ ;
Wilming, LG ;
Aidinis, V ;
Allen, JE ;
Ambesi-Impiombato, X ;
Apweiler, R ;
Aturaliya, RN ;
Bailey, TL ;
Bansal, M ;
Baxter, L ;
Beisel, KW ;
Bersano, T ;
Bono, H ;
Chalk, AM ;
Chiu, KP ;
Choudhary, V ;
Christoffels, A ;
Clutterbuck, DR ;
Crowe, ML ;
Dalla, E ;
Dalrymple, BP ;
de Bono, B ;
Della Gatta, G ;
di Bernardo, D ;
Down, T ;
Engstrom, P ;
Fagiolini, M ;
Faulkner, G ;
Fletcher, CF ;
Fukushima, T ;
Furuno, M ;
Futaki, S ;
Gariboldi, M .
SCIENCE, 2005, 309 (5740) :1559-1563
[7]  
*CHIMP SEQ AN CONS, 2005, NATURE, V0437
[8]   Characterization of evolutionary rates and constraints in three mammalian genomes [J].
Cooper, GM ;
Brudno, M ;
Stone, EA ;
Dubchak, I ;
Batzoglou, S ;
Sidow, A .
GENOME RESEARCH, 2004, 14 (04) :539-548
[9]   The DNA sequence and analysis of human chromosome 13 [J].
Dunham, A ;
Matthews, LH ;
Burton, J ;
Ashurst, JL ;
Howe, KL ;
Ashcroft, KJ ;
Beare, DM ;
Burford, DC ;
Hunt, SE ;
Griffiths-Jones, S ;
Jones, MC ;
Keenan, SJ ;
Oliver, K ;
Scott, CE ;
Ainscough, R ;
Almeida, JP ;
Ambrose, KD ;
Andrews, DT ;
Ashwell, RIS ;
Babbage, AK ;
Bagguley, CL ;
Bailey, J ;
Bannerjee, R ;
Barlow, KF ;
Bates, K ;
Beasley, H ;
Bird, CP ;
Bray-Allen, S ;
Brown, AJ ;
Brown, JY ;
Burrill, W ;
Carder, C ;
Carter, NP ;
Chapman, JC ;
Clamp, ME ;
Clark, SY ;
Clarke, G ;
Clee, CM ;
Clegg, SCM ;
Cobley, V ;
Collins, JE ;
Corby, N ;
Coville, GJ ;
Deloukas, P ;
Dhami, P ;
Dunham, I ;
Dunn, M ;
Earthrowl, ME ;
Ellington, AG ;
Faulkner, L .
NATURE, 2004, 428 (6982) :522-528
[10]   The scale of mutational variation in the murid genome [J].
Gaffney, DJ ;
Keightley, PD .
GENOME RESEARCH, 2005, 15 (08) :1086-1094