Constraints on the lake volume required for hydro-fracture through ice sheets

被引:101
作者
Krawczynski, M. J. [1 ]
Behn, M. D. [2 ]
Das, S. B. [2 ]
Joughin, I. [3 ]
机构
[1] MIT WHOI Joint Program, Cambridge, MA 02139 USA
[2] Woods Hole Oceanog Inst, Dept Geol & Geophys, Woods Hole, MA 02543 USA
[3] Univ Washington, Appl Phys Lab, Seattle, WA 98105 USA
关键词
GLACIERS; EVOLUTION; DRAINAGE;
D O I
10.1029/2008GL036765
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Water-filled cracks are an effective mechanism to drive hydro-fractures through thick ice sheets. Crack geometry is therefore critical in assessing whether a supraglacial lake contains a sufficient volume of water to keep a crack water-filled until it reaches the bed. In this study, we investigate fracture propagation using a linear elastic fracture mechanics model to calculate the dimensions of water-filled cracks beneath supraglacial lakes. We find that the cross-sectional area of water-filled cracks increases non-linearly with ice sheet thickness. Using these results, we place volumetric constraints on the amount of water necessary to drive cracks through similar to 1 km of sub-freezing ice. For ice sheet regions under little tension, lakes larger than 0.25-0.80 km in diameter contain sufficient water to rapidly drive hydro-fractures through 1-1.5 km of subfreezing ice. This represents similar to 98% of the meltwater volume held in supraglacial lakes in the central western margin of the Greenland Ice Sheet. Citation: Krawczynski, M. J., M. D. Behn, S. B. Das, and I. Joughin (2009), Constraints on the lake volume required for hydro-fracture through ice sheets, Geophys. Res. Lett., 36, L10501, doi: 10.1029/2008GL036765.
引用
收藏
页数:5
相关论文
共 18 条
[1]   Access of surface meltwater to beds of sub-freezing glaciers: preliminary insights [J].
Alley, RB ;
Dupont, TK ;
Parizek, BR ;
Anandakrishnan, S .
ANNALS OF GLACIOLOGY, VOL 40, 2005, 2005, 40 :8-14
[2]  
[Anonymous], 2007, CLIMATE CHANGE 2007
[3]   The role of hydrologically-driven ice fracture in drainage system evolution on an Arctic glacier [J].
Boon, S ;
Sharp, M .
GEOPHYSICAL RESEARCH LETTERS, 2003, 30 (18) :CRY1-1
[4]   Remote sounding of Greenland supraglacial melt lakes: implications for subglacial hydraulics [J].
Box, Jason E. ;
Ski, Kathleen .
JOURNAL OF GLACIOLOGY, 2007, 53 (181) :257-265
[5]  
Bruce P.M., 1990, MAGMA TRANSP STORAGE, P87
[6]   Fracture propagation to the base of the Greenland Ice Sheet during supraglacial lake drainage [J].
Das, Sarah B. ;
Joughin, Ian ;
Behn, Mark D. ;
Howat, Ian M. ;
King, Matt A. ;
Lizarralde, Dan ;
Bhatia, Maya P. .
SCIENCE, 2008, 320 (5877) :778-781
[7]   Fractures as the main pathways of water flow in temperate glaciers [J].
Fountain, AG ;
Jacobel, RW ;
Schlichting, R ;
Jansson, P .
NATURE, 2005, 433 (7026) :618-621
[8]   Calving giant icebergs: old principles, new applications [J].
Kenneally, J. P. ;
Hughes, T. .
ANTARCTIC SCIENCE, 2006, 18 (03) :409-419
[9]   Seasonal evolution of supra-glacial lakes on the Greenland Ice Sheet [J].
McMillan, Malcolm ;
Nienow, Peter ;
Shepherd, Andrew ;
Benham, Toby ;
Sole, Andrew .
EARTH AND PLANETARY SCIENCE LETTERS, 2007, 262 (3-4) :484-492
[10]  
NYE JF, 1955, J GLACIOL, V2, P512, DOI [DOI 10.3189/S0022143000032652, 10.3189/S0022143000032652]