Characterization of the structure and regulation of two novel isoforms of serum- and glucocorticoid-induced protein kinase

被引:339
作者
Kobayashi, T [1 ]
Deak, M [1 ]
Morrice, N [1 ]
Cohen, P [1 ]
机构
[1] Univ Dundee, Dept Biochem, MRC, Prot Phosphorylat Unit, Dundee DD1 5EH, Scotland
关键词
glucocorticoid; IGF1; insulin; oxidative stress; PKB; SGK;
D O I
10.1042/0264-6021:3440189
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The catalytic domain of serum- and glucocorticoid-induced protein kinase (SGK) is 54% identical with protein kinase B (PKB) and, like PKB, is activated in vitro by 3-phosphoinositide-dependent protein kinase-1 (PDK1) and in vivo in response to signals that activate phosphatidylinositol (PI) 3-kinase. Here we identify two novel isoforms of SGK, termed SGK2 and SGK3, whose catalytic domains share 80% amino acid sequence identity with each other and with SGK (renamed SGK1). Like SGK1, the mRNA encoding SGK3 is expressed in all tissues examined, but SGK2 mRNA is only present at significant levels in liver, kidney and pancreas and, at lower levels, in the brain. The levels of SGK2 mRNA in H4IIE cells and SGK3 mRNA in Rat2 fibroblasts are not increased by stimulation with serum or dexamethasone, whereas the level of SGK1 mRNA is increased greatly. SGK2 and SGK3 are activated in vitro by PDK1, albeit more slowly than SGK1, and their activation is accompanied by the phosphorylation of Thr(193) and Thr(253) respectively, the residues equivalent to the Thr in the 'activation loop' of PKB that is targeted by PDK1. The PDK1-catalysed phosphorylation and activation of SGK2 and SGK3, like SCK1, is greatly potentiated by mutating Ser(356) and Ser(419) respectively to Asp, these residues being equivalent to the C-terminal phosphorylation site of PKB. Like SGK1, SGK2 and SGK3 are activated 5-fold via a phosphorylation mechanism when cells are exposed to H2O2 but, in contrast with SGK1, activation is only suppressed partially by inhibitors of PI 3-kinase. SGK2 and SGK3 are activated to a smaller extent by insulin-like growth factor-1 (2-fold) than SGK1 (5-fold). Like PKB and SGK1, SGK2 and SGK3 preferentially phosphorylate Ser and Thr residues that lie in Arg-Xaa-Arg-Xaa-Xaa-Ser/Thr motifs.
引用
收藏
页码:189 / 197
页数:9
相关论文
共 25 条
  • [1] Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase B alpha
    Alessi, DR
    James, SR
    Downes, CP
    Holmes, AB
    Gaffney, PRJ
    Reese, CB
    Cohen, P
    [J]. CURRENT BIOLOGY, 1997, 7 (04) : 261 - 269
  • [2] Mechanism of activation and function of protein kinase B
    Alessi, DR
    Cohen, P
    [J]. CURRENT OPINION IN GENETICS & DEVELOPMENT, 1998, 8 (01) : 55 - 62
  • [3] Molecular basis for the substrate specificity of protein kinase B; Comparison with MAPKAP kinase-1 and p70 S6 kinase
    Alessi, DR
    Caudwell, FB
    Andjelkovic, M
    Hemmings, BA
    Cohen, P
    [J]. FEBS LETTERS, 1996, 399 (03) : 333 - 338
  • [4] 3-phosphoinositide-dependent protein kinase-1 (PDK1): structural and functional homology with the Drosophila DSTPK61 kinase
    Alessi, DR
    Deak, M
    Casamayor, A
    Caudwell, FB
    Morrice, N
    Norman, DG
    Gaffney, P
    Reese, CB
    MacDougall, CN
    Harbison, D
    Ashworth, A
    Bownes, M
    [J]. CURRENT BIOLOGY, 1997, 7 (10) : 776 - 789
  • [5] Mechanism of activation of protein kinase B by insulin and IGF-1
    Alessi, DR
    Andjelkovic, M
    Caudwell, B
    Cron, P
    Morrice, N
    Cohen, P
    Hemmings, BA
    [J]. EMBO JOURNAL, 1996, 15 (23) : 6541 - 6551
  • [6] 3 Phosphoinositide-dependent protein kinase 1 (PDK1) phosphorylates and activates the p70 S6 kinase in vivo and in vitro
    Alessi, DR
    Kozlowski, MT
    Weng, QP
    Morrice, N
    Avruch, J
    [J]. CURRENT BIOLOGY, 1998, 8 (02) : 69 - 81
  • [7] PDK1 acquires PDK2 activity in the presence of a synthetic peptide derived from the carboxyl terminus of PRK2
    Balendran, A
    Casamayor, A
    Deak, M
    Paterson, A
    Gaffney, P
    Currie, R
    Downes, CP
    Alessi, DR
    [J]. CURRENT BIOLOGY, 1999, 9 (08) : 393 - 404
  • [8] BALENDRAN A, 1999, IN PRESS J BIOL CHEM
  • [9] The Croonian Lecture 1998. Identification of a protein kinase cascade of major importance in insulin signal transduction
    Cohen, P
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1999, 354 (1382) : 485 - 495
  • [10] Purification and cDNA cloning of SAPKK3, the major activator of RK/p38 in stress- and cytokine-stimulated monocytes and epithelial cells
    Cuenda, A
    Alonso, G
    Morrice, N
    Jones, M
    Meier, R
    Cohen, P
    Nebreda, AR
    [J]. EMBO JOURNAL, 1996, 15 (16) : 4156 - 4164