Image deformation using moving least squares

被引:522
作者
Schaefer, Scott [1 ]
McPhail, Travis
Warren, Joe
机构
[1] Texas A&M Univ, College Stn, TX 77843 USA
[2] Rice Univ, Houston, TX 77251 USA
来源
ACM TRANSACTIONS ON GRAPHICS | 2006年 / 25卷 / 03期
关键词
deformations; moving least squares; rigid transformations;
D O I
10.1145/1141911.1141920
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We provide an image deformation method based on Moving Least Squares using various classes of linear functions including affine, similarity and rigid transformations. These deformations are realistic and give the user the impression of manipulating real-world objects. We also allow the user to specify the deformations using either sets of points or line segments, the later useful for controlling curves and profiles present in the image. For each of these techniques, we provide simple closed-form solutions that yield fast deformations, which can be performed in real-time.
引用
收藏
页码:533 / 540
页数:8
相关论文
共 16 条
[1]  
Alexa M, 2000, COMP GRAPH, P157, DOI 10.1145/344779.344859
[2]   Feature-based image metamorphosis [J].
Beier, Thaddeus ;
Neely, Shawn .
Computer Graphics (ACM), 1992, 26 (02) :35-42
[4]  
GU X, 2003, S GEOM PROC, P127
[5]   CLOSED-FORM SOLUTION OF ABSOLUTE ORIENTATION USING UNIT QUATERNIONS [J].
HORN, BKP .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1987, 4 (04) :629-642
[6]   As-rigid-as-possible shape manipulation [J].
Igarashi, T ;
Moscovich, T ;
Hughes, JF .
ACM TRANSACTIONS ON GRAPHICS, 2005, 24 (03) :1134-1141
[7]  
JU T, 2003, SGP 03 P 2003 EUR AC, P166
[8]  
LEE SY, 1995, SIGGRAPH 95, P439
[9]   The approximation power of moving least-squares [J].
Levin, D .
MATHEMATICS OF COMPUTATION, 1998, 67 (224) :1517-1531
[10]  
MacCracken Ron., 1996, SIGGRAPH, P181, DOI DOI 10.1145/237170.237247