Metrics with harmonic spinors

被引:71
作者
Bar, C
机构
[1] Mathematisches Institut, Universität Freiburg, 79104 Freiburg
关键词
D O I
10.1007/BF02246994
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that every closed spin manifold of dimension n = 3 mod 4 with a fixed spin structure can be given a Riemannian metric with harmonic spinors, i.e. the corresponding Dirac operator has a non-trivial kernel (Theorem A). To prove this we first compute the Dirac spectrum of the Berger spheres S-n, n odd (Theorem 3.1). The second main ingredient is Theorem B which states that the Dirac spectrum of a connected sum M(1)#M(2) with certain metrics is close to the union of the spectra of M(1) and of M(2).
引用
收藏
页码:899 / 942
页数:44
相关论文
共 19 条
[1]  
[Anonymous], 1984, EIGENVALUES RIEMANNI
[2]  
[Anonymous], 1973, COMPACT LIE GROUPS T
[3]  
Aronszajn N., 1957, J. Math. Pures Appl, V36, P235
[4]   INDEX OF ELLIPTIC OPERATORS .4. [J].
ATIYAH, MF ;
SINGER, IM .
ANNALS OF MATHEMATICS, 1971, 93 (01) :119-&
[5]   SPECTRAL ASYMMETRY AND RIEMANNIAN GEOMETRY .1. [J].
ATIYAH, MF ;
PATODI, VK ;
SINGER, IM .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1975, 77 (JAN) :43-69
[6]  
ATIYAH MF, 1968, ANN MATH, V87, P546, DOI 10.2307/1970717
[7]  
ATIYAH MF, 1971, ANN MATH, V93, P139
[8]   LOWER EIGENVALUE ESTIMATES FOR DIRAC OPERATORS [J].
BAR, C .
MATHEMATISCHE ANNALEN, 1992, 293 (01) :39-46
[9]   THE DIRAC OPERATOR ON HOMOGENEOUS SPACES AND ITS SPECTRUM ON 3-DIMENSIONAL LENS SPACES [J].
BAR, C .
ARCHIV DER MATHEMATIK, 1992, 59 (01) :65-79
[10]  
Bar C., 1992, ANN GLOB ANAL GEOM, V10, P263, DOI [10.1007/BF00136869, DOI 10.1007/BF00136869]