Helical growth of the Arabidopsis mutant tortifolia1 reveals a plant-specific microtubule-associated protein

被引:106
作者
Buschmann, H
Fabri, CO
Hauptmann, M
Hutzler, P
Laux, T
Lloyd, CW
Schäffner, AR [1 ]
机构
[1] GSF, Natl Res Ctr Environm & Hlth, Inst Biochem Plant Pathol, D-85764 Neuherberg, Germany
[2] GSF, Natl Res Ctr Environm & Hlth, Inst Pathol, D-85764 Neuherberg, Germany
[3] Univ Freiburg, Inst Biol 3, D-79194 Freiburg, Germany
[4] John Innes Ctr, Dept Cell & Dev Biol, Norwich NR4 7UH, Norfolk, England
基金
英国生物技术与生命科学研究理事会;
关键词
D O I
10.1016/j.cub.2004.08.033
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Plants can grow straight or in the twisted fashion exhibited by the helical growth of some climbing plants. Analysis of helical-growth mutants from Arabidopsis has indicated that microtubules are involved in the expression of the helical phenotype. Arabidopsis mutants growing with a right-handed twist have been reported to have cortical microtubules that wind around the cell in left-handed helices and vice versa [1-3]. Microtubular involvement is further suspected from the finding that some helical mutants are caused by single amino acid substitutions in alpha-tubulin and because of the sensitivity of the growth pattern to anti-microtubule drugs. Insight into the roles of microtubules in organ elongation is anticipated from analyses of genes defined by helical mutations [4]. We investigated the helical growth of the Arabidopsis mutant tortifolia1/spiral2 (tor1/spr2), which twists in a right-handed manner, and found that this correlates with a complex reorientation of cortical microtubules. TOR1 was identified by a map-based approach; analysis of the TOR1 protein showed that it is a member of a novel family of plant-specific proteins containing N-terminal HEAT repeats. Recombinant TOR1 colocalizes with cortical microtubules in planta and binds directly to microtubules in vitro. This shows that TOR1 is a novel, plant-specific microtubule-associated protein (MAP) that regulates the orientation of cortical microtubules and the direction of organ growth.
引用
收藏
页码:1515 / 1521
页数:7
相关论文
共 40 条
[1]   Genome-wide Insertional mutagenesis of Arabidopsis thaliana [J].
Alonso, JM ;
Stepanova, AN ;
Leisse, TJ ;
Kim, CJ ;
Chen, HM ;
Shinn, P ;
Stevenson, DK ;
Zimmerman, J ;
Barajas, P ;
Cheuk, R ;
Gadrinab, C ;
Heller, C ;
Jeske, A ;
Koesema, E ;
Meyers, CC ;
Parker, H ;
Prednis, L ;
Ansari, Y ;
Choy, N ;
Deen, H ;
Geralt, M ;
Hazari, N ;
Hom, E ;
Karnes, M ;
Mulholland, C ;
Ndubaku, R ;
Schmidt, I ;
Guzman, P ;
Aguilar-Henonin, L ;
Schmid, M ;
Weigel, D ;
Carter, DE ;
Marchand, T ;
Risseeuw, E ;
Brogden, D ;
Zeko, A ;
Crosby, WL ;
Berry, CC ;
Ecker, JR .
SCIENCE, 2003, 301 (5633) :653-657
[2]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[3]   Homology-based method for identification of protein repeats using statistical significance estimates [J].
Andrade, MA ;
Ponting, CP ;
Gibson, TJ ;
Bork, P .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 298 (03) :521-537
[4]  
Ausubel FM, 1995, SHORT PROTOCOLS MOL
[5]  
Brown JH, 1996, PROTEINS, V26, P134
[6]  
Burger D, 1971, ARABID INF SERV, V8, P36
[7]   Alteration of oriented deposition of cellulose microfibrils by mutation of a katanin-like microtubule-severing protein [J].
Burk, DH ;
Ye, ZH .
PLANT CELL, 2002, 14 (09) :2145-2160
[8]  
BUSCHMAN H, 2002, THESIS U MUNICH LMU
[9]   Isolation of microtubule-associated proteins from carrot cytoskeletons: A 120 kDa map decorates all four microtubule arrays and the nucleus [J].
Chan, J ;
Rutten, T ;
Lloyd, C .
PLANT JOURNAL, 1996, 10 (02) :251-259
[10]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743