Irrelevance in the (d-2) expansion of nonlinear sigma and Heisenberg models

被引:11
作者
Brezin, E
Hikami, S
机构
[1] UNIV TOKYO, DEPT PURE & APPL SCI, MEGURO KU, TOKYO 153, JAPAN
[2] ECOLE NORMALE SUPER, CNRS, PARIS, FRANCE
[3] UNIV PARIS 11, ORSAY, FRANCE
关键词
D O I
10.1103/PhysRevB.55.R10169
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We review the existing results on the scaling dimensions of operators with more than two derivatives in nonlinear sigma and Heisenberg models. We argue that speculations on the relevance of these operators, and correspondingly on the breakdown of the (d-2) expansion for the classical Heisenberg model, or for the one-parameter scaling theory of localization, are based on a dubious mathematical analysis.
引用
收藏
页码:10169 / 10172
页数:4
相关论文
共 19 条
[1]   SCALING THEORY OF LOCALIZATION - ABSENCE OF QUANTUM DIFFUSION IN 2 DIMENSIONS [J].
ABRAHAMS, E ;
ANDERSON, PW ;
LICCIARDELLO, DC ;
RAMAKRISHNAN, TV .
PHYSICAL REVIEW LETTERS, 1979, 42 (10) :673-676
[2]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[3]  
BRAZOVSKII SA, 1975, JETP LETT+, V21, P164
[4]   RENORMALIZATION OF NONLINEAR SIGMA-MODEL IN 2+ EPSILON-DIMENSIONS-APPLICATION TO HEISENBERG FERROMAGNETS [J].
BREZIN, E ;
ZINJUSTIN, J .
PHYSICAL REVIEW LETTERS, 1976, 36 (13) :691-694
[5]   GENERALIZED NON-LINEAR SIGMA-MODELS WITH GAUGE-INVARIANCE [J].
BREZIN, E ;
HIKAMI, S ;
ZINNJUSTIN, J .
NUCLEAR PHYSICS B, 1980, 165 (03) :528-544
[6]  
BREZIN E, UNPUB
[7]   INSTABILITY OF THE FIXED-POINT OF THE O(N) NONLINEAR SIGMA-MODEL IN 2+ EPSILON DIMENSIONS [J].
CASTILLA, GE ;
CHAKRAVARTY, S .
PHYSICAL REVIEW LETTERS, 1993, 71 (03) :384-387
[8]   Is the phase transition in the Heisenberg model described by the (2+epsilon) expansion of the non-linear sigma-model? [J].
Castilla, GE ;
Chakravarty, S .
NUCLEAR PHYSICS B, 1997, 485 (03) :613-645
[9]   DESTRUCTION OF 1ST-ORDER TRANSITIONS BY SYMMETRY-BREAKING FIELDS [J].
DOMANY, E ;
MUKAMEL, D ;
FISHER, ME .
PHYSICAL REVIEW B, 1977, 15 (11) :5432-5441
[10]   ANDERSON LOCALIZATION IN A NONLINEAR-SIGMA-MODEL REPRESENTATION [J].
HIKAMI, S .
PHYSICAL REVIEW B, 1981, 24 (05) :2671-2679