Phosphorylation of Thr-948 at the C terminus of the plasma membrane H+-ATPase creates a binding site for the regulatory 14-3-3 protein

被引:225
作者
Svennelid, F
Olsson, A
Piotrowski, M
Rosenquist, M
Ottman, C
Larsson, C
Oecking, C
Sommarin, M
机构
[1] Univ Lund, Dept Plant Biochem, SE-22100 Lund, Sweden
[2] Ruhr Univ Bochum, Lehrstuhl Pflanzenphysiol, D-44780 Bochum, Germany
关键词
D O I
10.1105/tpc.11.12.2379
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The plant plasma membrane H+-ATPase is activated by the binding of 14-3-3 protein to the C-terminal region of the enzyme, thus forming an H+-ATPase-14-3-3 complex that can be stabilized by the fungal toxin fusicoccin, A novel 14-3-3 binding motif, QQXYpT(948)V, at the C terminus of the H+-ATPase is identified and characterized, and the protein kinase activity in the plasma membrane fraction that phosphorylates this threonine residue in the H+-ATPase is identified. A synthetic peptide that corresponds to the C-terminal 16 amino acids of the H+-ATPase and that is phosphorylated on Thr-943 prevents the in vitro activation of the H+-ATPase that is obtained in the presence of recombinant 14-3-3 and fusicoccin, Furthermore, binding of 14-3-3 to the H+-ATPase in the absence of fusicoccin is absolutely dependent on the phosphorylation of Thr-948, whereas binding of 14-3-3 in the presence of fusicoccin occurs independently of phosphorylation but still involves the C-terminal motif YTV, Finally, by complementing yeast that lacks its endogenous H+-ATPase with wild-type and mutant forms of the Nicotiana plumbaginifolia H+-ATPase isoform PMA2, we provide physiological evidence for the importance of the phosphothreonine motif in 14-3-3 binding and, hence, in the activation of the H+-ATPase in vivo. Indeed, replacing Thr-943 in the plant H+-ATPase with alanine is lethal because this mutant fails to functionally replace the yeast H+-ATPase. Considering the importance of the motif QQXYpTV for 14-3-3 binding and yeast growth, this motif should be of vital importance for regulating H+-ATPase activity in the plant and thus for plant growth.
引用
收藏
页码:2379 / 2391
页数:13
相关论文
共 39 条
[1]   14-3-3 proteins associate with the regulatory phosphorylation site of spinach leaf nitrate reductase in an isoform-specific manner and reduce dephosphorylation of Ser-543 by endogenous protein phosphatases [J].
Bachmann, M ;
Huber, JL ;
Athwal, GS ;
Wu, K ;
Ferl, RJ ;
Huber, SC .
FEBS LETTERS, 1996, 398 (01) :26-30
[2]   Modified plant plasma membrane H+-ATPase with improved transport coupling efficiency identified by mutant selection in yeast [J].
Baunsgaard, L ;
Venema, K ;
Axelsen, KB ;
Villalba, JM ;
Welling, A ;
Wollenweber, B ;
Palmgren, MG .
PLANT JOURNAL, 1996, 10 (03) :451-458
[3]   The 14-3-3 proteins associate with the plant plasma membrane H+-ATPase to generate a fusicoccin binding complex and a fusicoccin responsive system [J].
Baunsgaard, L ;
Fuglsang, AT ;
Jahn, T ;
Korthout, HAAJ ;
de Boer, AH ;
Palmgren, MG .
PLANT JOURNAL, 1998, 13 (05) :661-671
[5]   The plasma membrane H+-ATPase from maize roots is phosphorylated in the C-terminal domain by a calcium-dependent protein kinase [J].
Camoni, L ;
Fullone, MR ;
Marra, M ;
Aducci, P .
PHYSIOLOGIA PLANTARUM, 1998, 104 (04) :549-555
[6]   The 14-3-3 proteins: cellular regulators of plant metabolism [J].
Chung, HJ ;
Sehnke, PC ;
Ferl, RJ .
TRENDS IN PLANT SCIENCE, 1999, 4 (09) :367-371
[7]   FUNCTIONAL COMPLEMENTATION OF A NULL MUTATION OF THE YEAST SACCHAROMYCES-CEREVISIAE PLASMA-MEMBRANE H+-ATPASE BY A PLANT H+-ATPASE GENE [J].
DEXAERDE, AD ;
SUPPLY, P ;
DUFOUR, JP ;
BOGAERTS, P ;
THINES, D ;
GOFFEAU, A ;
BOUTRY, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (40) :23828-23837
[8]   Identification of a finding sequence for the 14-3-3 protein within the cytoplasmic domain of the adhesion receptor, platelet glycoprotein Ib alpha [J].
Du, XP ;
Fox, JE ;
Pei, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (13) :7362-7367
[9]   Fusicoccin effect on the in vitro interaction between plant 14-3-3 proteins and plasma membrane H+-ATPase [J].
Fullone, MR ;
Visconti, S ;
Marra, M ;
Fogliano, V ;
Aducci, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (13) :7698-7702
[10]   The 14-3-3 protein interacts directly with the C-terminal region of the plant plasma membrane H+-ATPase [J].
Jahn, T ;
Fuglsang, AT ;
Olsson, A ;
Bruntrup, IM ;
Collinge, DB ;
Volkmann, D ;
Sommarin, M ;
Palmgren, MG ;
Larsson, C .
PLANT CELL, 1997, 9 (10) :1805-1814