An explicit description of the reproducing kernel Hilbert spaces of Gaussian RBF kernels

被引:155
作者
Steinwart, Ingo [1 ]
Hush, Don [1 ]
Scovel, Clint [1 ]
机构
[1] Los Alamos Natl Lab, Grp CS3, Los Alamos, NM 87545 USA
关键词
Gaussian radial basis function (RBF) kernel; reproducing kernel Hilbert space; support vector machine;
D O I
10.1109/TIT.2006.881713
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Although Gaussian radial basis function (RBF) kernels are one of the most often used kernels in modern machine learning methods such as support vector machines (SVMs), little is known about the structure of their reproducing kernel Hilbert spaces (RKHSs). In this work, two distinct explicit descriptions of the RKHSs corresponding to Gaussian RBF kernels are given and some consequences are discussed. Furthermore, an orthonormal basis for these spaces is presented. Finally, it is discussed how the results can be used for analyzing the learning performance of SVMs.
引用
收藏
页码:4635 / 4643
页数:9
相关论文
共 21 条
[1]  
[Anonymous], KERNEL METHODS PATTE
[2]  
[Anonymous], 1998, Encyclopedia of Biostatistics
[3]   THEORY OF REPRODUCING KERNELS [J].
ARONSZAJN, N .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 68 (MAY) :337-404
[5]   INEQUALITIES IN FOURIER-ANALYSIS [J].
BECKNER, W .
ANNALS OF MATHEMATICS, 1975, 102 (01) :159-182
[6]  
Devroye L., 1996, A probabilistic theory of pattern recognition
[7]  
DUREN P. L., 1970, Theory of Spaces
[8]  
HILLE E, 1957, FUNCTIONAL ANAL SEM, V31
[9]  
Hille Einar, 1972, ROCKY MOUNTAIN J MAT, V2, P321, DOI DOI 10.1216/RMJ-1972-2-3-321
[10]  
Hsu C.W, 2008, PRACTICAL GUIDE SUPP