A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries

被引:399
作者
Jerrum, M
Sinclair, A
Vigoda, E
机构
[1] Univ Edinburgh, Sch Informat, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] Univ Calif Berkeley, Div Comp Sci, Berkeley, CA 94720 USA
[3] Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA
关键词
Markov chain Monte Carlo; permanent of a matrix; rapidly mixing Markov chains; algorithms; theory;
D O I
10.1145/1008731.1008738
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We present a polynomial-time randomized algorithm for estimating the permanent of an arbitrary n x n matrix with nonnegative entries. This algorithm-technically a "fully-polynomial randomized approximation scheme" - computes an approximation that is, with high probability, within arbitrarily small specified relative error of the true value of the permanent.
引用
收藏
页码:671 / 697
页数:27
相关论文
共 27 条
[1]  
Aldous D., 1987, Probability in the Engineering and Informational Sciences, V1, P33, DOI [10.1017/S0269964800000267, DOI 10.1017/S0269964800000267]
[2]  
ALON N, 1992, PROBABILISTIC METHOD
[3]  
Barvinok A, 1999, RANDOM STRUCT ALGOR, V14, P29, DOI 10.1002/(SICI)1098-2418(1999010)14:1<29::AID-RSA2>3.0.CO
[4]  
2-X
[5]  
Broder AZ, 1986, P 18 ANN ACM S THEOR, P50, DOI DOI 10.1145/12130.12136
[6]  
Chien S., 2002, P 34 ANN ACM S THEOR, P222
[7]  
Diaconis P., 1991, Ann. Appl. Probab., P36
[8]  
Diaconis P., 1993, Ann. Appl. Probab., V3, P696, DOI [10.1214/aoap/1177005359, DOI 10.1214/AOAP/1177005359]
[9]   A Chernoff bound for random walks on expander graphs [J].
Gillman, D .
SIAM JOURNAL ON COMPUTING, 1998, 27 (04) :1203-1220
[10]   APPROXIMATING THE PERMANENT [J].
JERRUM, M ;
SINCLAIR, A .
SIAM JOURNAL ON COMPUTING, 1989, 18 (06) :1149-1178