Effects of seizures on developmental processes in the immature brain

被引:270
作者
Ben-Ari, Yehezkel
Holmes, Gregory L.
机构
[1] INSERM, Inst Neurobiol Mediterranean Sea, INMED, F-13273 Marseille 09, France
[2] Univ Mediterranee, Marseille, France
[3] Dartmouth Coll Sch Med, Neurosci Ctr Dartmouth, Hanover, NH USA
关键词
D O I
10.1016/S1474-4422(06)70626-3
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Infants and children are at a high risk for seizures compared with adults. Although most seizures in children are benign and result in no long-term consequences, increasing experimental animal data strongly suggest that frequent or prolonged seizures in the developing brain result in long-lasting sequelae. Such seizures may intervene with developmental programmes and lead to inadequate construction of cortical networks rather than induction of neuronal cell loss. As a consequence, the deleterious actions of seizures are strongly age dependent: seizures have different effects on immature or migrating neurons endowed with few synapses and more developed neurons that express hundreds of functional synapses. This differential effect is even more important in human beings and subhuman primates who have an extended brain development period. Seizures also beget seizures during maturation and result in a replay of development programmes, which suggests that epileptogenesis recapitulates ontogenesis. Therefore, to understand seizures and their consequences in the developing brain, it is essential to determine how neuronal activity modulates the main steps of cortical formation. In this Review, we present basic developmental principles obtained from animal studies and examine the long-lasting consequences of epilepsy.
引用
收藏
页码:1055 / 1063
页数:9
相关论文
共 113 条
[1]   INVOLVEMENT OF GABA-A RECEPTORS IN THE OUTGROWTH OF CULTURED HIPPOCAMPAL-NEURONS [J].
BARBIN, G ;
POLLARD, H ;
GAIARSA, JL ;
BENARI, Y .
NEUROSCIENCE LETTERS, 1993, 152 (1-2) :150-154
[2]   The multiple facets of γ-aminobutyric acid dysfunction in epilepsy [J].
Ben-Ari, Y ;
Holmes, GL .
CURRENT OPINION IN NEUROLOGY, 2005, 18 (02) :141-145
[3]   Excitatory actions of GABA during development: The nature of the nurture [J].
Ben-Ari, Y .
NATURE REVIEWS NEUROSCIENCE, 2002, 3 (09) :728-739
[5]   LONG-LASTING MODIFICATION OF THE SYNAPTIC PROPERTIES OF RAT CA3 HIPPOCAMPAL-NEURONS INDUCED BY KAINIC ACID [J].
BENARI, Y ;
GHO, M .
JOURNAL OF PHYSIOLOGY-LONDON, 1988, 404 :365-384
[6]   GABA(A), NMDA and AMPA receptors: a developmentally regulated 'menage a trois' [J].
BenAri, Y ;
Khazipov, R ;
Leinekugel, X ;
Caillard, O ;
Gaiarsa, JL .
TRENDS IN NEUROSCIENCES, 1997, 20 (11) :523-529
[7]   GIANT SYNAPTIC POTENTIALS IN IMMATURE RAT CA3 HIPPOCAMPAL-NEURONS [J].
BENARI, Y ;
CHERUBINI, E ;
CORRADETTI, R ;
GAIARSA, JL .
JOURNAL OF PHYSIOLOGY-LONDON, 1989, 416 :303-325
[8]   Two-year remission and subsequent relapse in children with newly diagnosed epilepsy [J].
Berg, AT ;
Shinnar, S ;
Levy, SR ;
Testa, FM ;
Smith-Rapaport, S ;
Beckerman, B ;
Ebrahimi, N .
EPILEPSIA, 2001, 42 (12) :1553-1562
[9]   MATURATION OF KAINIC ACID SEIZURE BRAIN DAMAGE SYNDROME IN THE RAT .3. POSTNATAL-DEVELOPMENT OF KAINIC ACID BINDING-SITES IN THE LIMBIC SYSTEM [J].
BERGER, ML ;
TREMBLAY, E ;
NITECKA, L ;
BENARI, Y .
NEUROSCIENCE, 1984, 13 (04) :1095-1104
[10]   DEVELOPMENTAL-CHANGES IN INTRACELLULAR CALCIUM REGULATION IN RAT CEREBRAL-CORTEX DURING HYPOXIA [J].
BICKLER, PE ;
GALLEGO, SM ;
HANSEN, BM .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1993, 13 (05) :811-819