Adaptive observer-based control for a class of chaotic systems

被引:46
作者
Hua, CC [1 ]
Guan, XP
Li, XL
Shi, P
机构
[1] Yanshan Univ, Inst Elect Engn, Hebei 066004, Qinhuangdao, Peoples R China
[2] Univ Glamorgan, Sch Technol, Pontypridd CF37 1DL, M Glam, Wales
基金
中国国家自然科学基金;
关键词
D O I
10.1016/j.chaos.2003.12.072
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, the problem of control for a class of chaotic systems is studied. Only partial information of the systems states is known. First, an adaptive observer is designed to ensure the corresponding error system asymptotically stable. Then, based on the states obtained by the above observer, a nonlinear state feedback controller is constructed for the chaotic system, which, according to the input to state stable (ISS) principal, guarantees the closed-loop chaotic system is asymptotically stable. A numerical example is included to show the effectiveness of the proposed techniques. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:103 / 110
页数:8
相关论文
共 20 条
[1]   Adaptive synchronization of chaos for secure communication [J].
Boccaletti, S ;
Farini, A ;
Arecchi, FT .
PHYSICAL REVIEW E, 1997, 55 (05) :4979-4981
[2]  
Chen G., 1998, CHAOS ORDER METHODOL
[3]   Observer-based exact synchronization of ideal and mismatched chaotic systems [J].
Feki, M .
PHYSICS LETTERS A, 2003, 309 (1-2) :53-60
[4]   Time-delayed feedback control of time-delay chaotic systems [J].
Guan, XP ;
Chen, CL ;
Peng, HP ;
Fan, ZP .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (01) :193-205
[5]   Synchronization of uncertain time delay chaotic systems using the adaptive fuzzy method [J].
Guan, XP ;
Hua, CC .
CHINESE PHYSICS LETTERS, 2002, 19 (08) :1031-1034
[6]  
Hua CC, 2002, P AMER CONTR CONF, V1-6, P3365, DOI 10.1109/ACC.2002.1025313
[7]   Robust control of time-delay chaotic systems [J].
Hua, CC ;
Guan, XP .
PHYSICS LETTERS A, 2003, 314 (1-2) :72-80
[8]   Nonlinear discrete-time synchronization via extended observers [J].
Huijberts, HJC ;
Lilge, T ;
Nijmeijer, H .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (07) :1997-2006
[9]   A simple global synchronization criterion for coupled chaotic systems [J].
Jiang, GP ;
Tang, WKS ;
Chen, GR .
CHAOS SOLITONS & FRACTALS, 2003, 15 (05) :925-935
[10]   A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems [J].
Jiang, ZP ;
Mareels, IMY ;
Wang, Y .
AUTOMATICA, 1996, 32 (08) :1211-1215