Reactive oxygen species as signals that modulate plant stress responses and programmed cell death

被引:807
作者
Gechev, Tsanko S.
Van Breusegem, Frank
Stone, Julie M.
Denev, Iliya
Laloi, Christophe
机构
[1] Paisij Hilendarski Univ Plovdiv, Dept Plant Physiol & Plant Mol Biol, BU-4000 Plovdiv, Bulgaria
[2] Univ Ghent VIB, Univ Antwerp VIB, Dept Plant Syst Biol, Ghent, Belgium
[3] Univ Nebraska, Dept Biochem & Plant Sci Initiat, Lincoln, NE USA
关键词
D O I
10.1002/bies.20493
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Reactive oxygen species (ROS) are known as toxic metabolic products in plants and other aerobic organisms. An elaborate and highly redundant plant ROS network, composed of antioxidant enzymes, antioxidants and ROS-producing enzymes, is responsible for maintaining ROS levels under tight control. This allows ROS to serve as signaling molecules that coordinate an astonishing range of diverse plant processes. The specificity of the biological response to ROS depends on the chemical identity of ROS, intensity of the signal, sites of production, plant developmental stage, previous stresses encountered and interactions with other signaling molecules such as nitric oxide, lipid messengers and plant hormones. Although many components of the ROS signaling network have recently been identified, the challenge remains to understand how ROS-derived signals are integrated to eventually regulate such biological processes as plant growth, development, stress adaptation and programmed cell death.
引用
收藏
页码:1091 / 1101
页数:11
相关论文
共 100 条
[1]  
ADADA K, 2006, PLANT PHYSIOL, V141, P391
[2]   Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity [J].
Alvarez, ME ;
Pennell, RI ;
Meijer, PJ ;
Ishikawa, A ;
Dixon, RA ;
Lamb, C .
CELL, 1998, 92 (06) :773-784
[3]   Reactive oxygen species: Metabolism, oxidative stress, and signal transduction [J].
Apel, K ;
Hirt, H .
ANNUAL REVIEW OF PLANT BIOLOGY, 2004, 55 :373-399
[4]   Allelopathy and exotic plant invasion: From molecules and genes to species interactions [J].
Bais, HP ;
Vepachedu, R ;
Gilroy, S ;
Callaway, RM ;
Vivanco, JM .
SCIENCE, 2003, 301 (5638) :1377-1380
[5]   Membrane transport of hydrogen peroxide [J].
Bienert, Gerd P. ;
Schjoerring, Jan K. ;
Jahn, Thomas P. .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2006, 1758 (08) :994-1003
[6]   A RhoGDP dissociation inhibitor spatially regulates growth in root hair cells [J].
Carol, RJ ;
Takeda, S ;
Linstead, P ;
Durrant, MC ;
Kakesova, H ;
Derbyshire, P ;
Drea, S ;
Zarsky, V ;
Dolan, L .
NATURE, 2005, 438 (7070) :1013-1016
[7]   Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic tobacco [J].
Chamnongpol, S ;
Willekens, H ;
Moeder, W ;
Langebartels, C ;
Sandermann, H ;
Van Montagu, A ;
Inzé, D ;
Van Camp, W .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (10) :5818-5823
[8]   Arabidopsis Hsa32, a novel heat shock protein, is essential for acquired thermotolerance during long recovery after acclimation [J].
Charng, YY ;
Liu, HC ;
Liu, NY ;
Hsu, FC ;
Ko, SS .
PLANT PHYSIOLOGY, 2006, 140 (04) :1297-1305
[9]   Dual action of the active oxygen species during plant stress responses [J].
Dat, J ;
Vandenabeele, S ;
Vranová, E ;
Van Montagu, M ;
Inzé, D ;
Van Breusegem, F .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2000, 57 (05) :779-795
[10]   Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco [J].
Dat, JF ;
Pellinen, R ;
Beeckman, T ;
Van de Cotte, B ;
Langebartels, C ;
Kangasjärvi, J ;
Inzé, D ;
Van Breusegem, F .
PLANT JOURNAL, 2003, 33 (04) :621-632