Three-dimensional network photonic crystals via cyclic size reduction/infiltration of sea urchin exoskeleton

被引:53
作者
Ha, YH
Vaia, RA
Lynn, WF
Costantino, JP
Shin, J
Smith, AB
Matsudaira, PT
Thomas, EL [1 ]
机构
[1] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[2] USAF, Res Lab, Mat & Mfg Directorate, Wright Patterson AFB, OH 45433 USA
[3] Veridian Engn, Dayton, OH 45431 USA
[4] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[5] Nat Hist Museum, Dept Palaeontol, London SW7 5BD, England
[6] MIT, Whitehead Inst Biomed Res, Dept Biol, Cambridge, MA 02142 USA
[7] MIT, Whitehead Inst Biomed Res, Div Biol Engn, Cambridge, MA 02142 USA
关键词
D O I
10.1002/adma.200400131
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Many naturally occurring solids possess periodic structures that give rise to visible photonic crystal properties,([1]) commonly termed structural colors. Some stunning examples are butterfly wings (one-dimensional, 1D), ([2]) abalone shells (1D),([3]) sea-mouse spines (two-dimensional, 2D),([4]) and natural opals (three-dimensional, 3D).([5]) Exploitation of other periodic natural structures, is however limited by the inherently large size scale and the low dielectric contrast of the materials. Furthermore, these generally more complex geometries are a challenge to model correctly in order to obtain correct band diagrams. Here we report the development of a high fidelity cyclic size reduction and infiltration scheme, and apply it to a sea urchin exoskeleton to successfully fabricate a high dielectric contrast 3D photonic crystal exhibiting a stop band in the mid-IR range. The band structure of the exoskeleton is modeled using level set mathematics and agrees well with the experimental reflectivity exhibited by the 3D bicontinuous tellurium network of the replicated urchin.
引用
收藏
页码:1091 / +
页数:5
相关论文
共 31 条
  • [1] Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres
    Blanco, A
    Chomski, E
    Grabtchak, S
    Ibisate, M
    John, S
    Leonard, SW
    Lopez, C
    Meseguer, F
    Miguez, H
    Mondia, JP
    Ozin, GA
    Toader, O
    van Driel, HM
    [J]. NATURE, 2000, 405 (6785) : 437 - 440
  • [2] BREWSTER D, 1853, TREATISE OPTICS, P137
  • [3] Currey JD, 1999, J EXP BIOL, V202, P3285
  • [4] ORIGIN OF PRECIOUS OPAL
    DARRAGH, PJ
    GASKIN, AJ
    TERRELL, BC
    SANDERS, JV
    [J]. NATURE, 1966, 209 (5018) : 13 - &
  • [5] A dielectric omnidirectional reflector
    Fink, Y
    Winn, JN
    Fan, SH
    Chen, CP
    Michel, J
    Joannopoulos, JD
    Thomas, EL
    [J]. SCIENCE, 1998, 282 (5394) : 1679 - 1682
  • [6] PHASE-BEHAVIOR OF AN ENSEMBLE OF NONINTERSECTING RANDOM FLUID FILMS
    HUSE, DA
    LEIBLER, S
    [J]. JOURNAL DE PHYSIQUE, 1988, 49 (04): : 605 - 621
  • [7] Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis
    Johnson, SG
    Joannopoulos, JD
    [J]. OPTICS EXPRESS, 2001, 8 (03): : 173 - 190
  • [9] A NEW SILICON-BASED MATERIAL FORMED BY PYROLYSIS OF SILICON RUBBER AND ITS PROPERTIES AS A MEMBRANE
    LEE, KH
    KHANG, SJ
    [J]. CHEMICAL ENGINEERING COMMUNICATIONS, 1986, 44 (1-6) : 121 - 132
  • [10] POLYMORPHISM OF LIPIDS
    LUZZATI, V
    SPEGT, PA
    [J]. NATURE, 1967, 215 (5102) : 701 - &