Logratio analysis and compositional distance

被引:401
作者
Aitchison, J [1 ]
Barceló-Vidal, C
Martín-Fernández, JA
Pawlowsky-Glahn, V
机构
[1] Univ Glasgow, Dept Stat, Glasgow G12 8QQ, Lanark, Scotland
[2] Univ Girona, Escola Politecn Super, Dept Informat & Matemat Aplicada, Girona 17971, Spain
[3] Univ Politecn Cataluna, ETS Eng Camins Canals & Ports, Dept Matemat Aplicada 3, E-08034 Barcelona, Spain
来源
MATHEMATICAL GEOLOGY | 2000年 / 32卷 / 03期
关键词
Euclidean distance; permutation invariance; perturbation invariance; scale invariance; subcompositional dominance;
D O I
10.1023/A:1007529726302
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The concept of distance between two compositions is important in the statistical analysis of compositional data, particularly in such activities as cluster analysis and multidimensional scaling. This paper exposes rite fallacies in a recent criticism of logratio-based distance measures-in particular; the misstatements that logratio methods destroy distance structures and are denominator dependent. Emphasis is on ensuring that compositional data analysis involving distance concepts satisfies certain logically necessary invariance conditions. Logratio analysis and its associated distance measures satisfies these conditions.
引用
收藏
页码:271 / 275
页数:5
相关论文
共 9 条
[1]  
AITCHISON J, 1983, BIOMETRIKA, V70, P57
[2]  
Aitchison J, 1994, INST MATH S, V24, P73, DOI 10.1214/lnms/1215463786
[3]   ON CRITERIA FOR MEASURES OF COMPOSITIONAL DIFFERENCE [J].
AITCHISON, J .
MATHEMATICAL GEOLOGY, 1992, 24 (04) :365-379
[4]  
Aitchison J, 1997, P IAMG 97 3 ANN C IN, V97, P3
[5]  
Anderson T.W., 1986, STAT ANAL DATA, V2nd
[6]  
DOVETON JH, 1998, P IAMG98 4 ANN C INT, P71
[7]  
MARTIN M.C., 1996, 5 C INT FED CLASS SO, V1, P215
[8]  
ZIER U, 1998, P IAMG98 4 ANN C INT, P555
[9]  
[No title captured]