Transplantation of human neural stem cells exerts neuroprotection in a rat model of Parkinson's disease

被引:220
作者
Yasuhara, Takao
Matsukawa, Noriyuki
Hara, Koichi
Yu, Guolong
Xu, Lin
Maki, Mina
Kim, Seung U.
Borlongan, Cesario V.
机构
[1] Med Coll Georgia, Dept Neurol, Augusta, GA 30912 USA
[2] Ajou Univ, Sch Med, Dis Res Ctr, Suwon 443721, South Korea
[3] Univ British Columbia, Div Neurol, Vancouver, BC V5Z 1M9, Canada
[4] Augusta Vet Affairs Med Ctr, Res & Affiliat Serv Line, Augusta, GA 30904 USA
关键词
apoptosis; neurogenesis; neuroprotection; neurodegeneration; stem cell factor; trophic;
D O I
10.1523/JNEUROSCI.3719-06.2006
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Neural stem cells (NSCs) possess high potencies of self-renewal and neuronal differentiation. We explored here whether transplantation of human NSCs cloned by v-myc gene transfer, HB1.F3 cells, is a feasible therapeutic option for Parkinson's disease. In vivo, green fluorescent protein-labeled HB1.F3 cells (200,000 viable cells in 3 mu l of PBS) when stereotaxically transplanted (same-day lesiontransplant paradigm) into the 6-hydroxydopamine-lesioned striatum of rats significantly ameliorated parkinsonian behavioral symptoms compared with controls (vehicle, single bolus, or continuous minipump infusion of trophic factor, or killed cell grafts). Such graft-derived functional effects were accompanied by preservation of tyrosine hydroxylase (TH) immunoreactivity along the nigrostriatal pathway. Grafted HB1.F3 cells survived in the lesioned brain with some labeled with neuronal marker mitogen-activated protein 2 and decorated with synaptophysin-positive terminals. Furthermore, endogenous neurogenesis was activated in the subventricular zone of transplanted rats. To further explore the neuroprotective mechanisms underlying HB1.F3 cell transplantation, we performed cell culture studies and found that a modest number of HB1.F3 cells were TH and dopamine and cAMP-regulated phosphoprotein 32 positive, although most cells were nestin positive, suggesting a mixed population of mature and immature cells. Administration of the HB1.F3 supernatant to human derived dopaminergic SH-SY5Y cells and fetal rat ventral mesencephalic dopaminergic neurons protected against 6-hydroxydopamine neurotoxicity by suppressing apoptosis through Bcl-2 upregulation, which was blocked by anti-stem cell factor antibody alone, the phosphatidylinositol 3-kinase/Akt inhibitor LY294002 [2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one] alone, or a combination of both. These results suggest that HB1.F3 cell transplantation exerts neuroprotective effects against dopaminergic depletion in vitro and in vivo because of trophic factor secretion and neuronal differentiation.
引用
收藏
页码:12497 / 12511
页数:15
相关论文
共 98 条
[1]   Neuroprotection through delivery of glial cell line-derived neurotrophic factor by neural stem cells in a mouse model of Parkinson's disease [J].
Åkerud, P ;
Canals, JM ;
Snyder, EY ;
Arenas, E .
JOURNAL OF NEUROSCIENCE, 2001, 21 (20) :8108-8118
[2]   Neuroprotective strategies for basal ganglia degeneration: Parkinson's and Huntington's diseases [J].
Alexi, T ;
Borlongan, CV ;
Faull, RLM ;
Williams, CE ;
Clark, RG ;
Gluckman, PD ;
Hughes, PE .
PROGRESS IN NEUROBIOLOGY, 2000, 60 (05) :409-470
[3]   Stem cells in the treatment of Parkinson's disease [J].
Arenas, E .
BRAIN RESEARCH BULLETIN, 2002, 57 (06) :795-808
[4]   The potential for circuit reconstruction by expanded neural precursor cells explored through porcine xenografts in a rat model of Parkinson's disease [J].
Armstrong, RJE ;
Hurelbrink, CB ;
Tyers, P ;
Ratcliffe, EL ;
Richards, A ;
Dunnett, SB ;
Rosser, AE ;
Barker, RA .
EXPERIMENTAL NEUROLOGY, 2002, 175 (01) :98-111
[5]   The biology of stem cell factor and its receptor C-kit [J].
Ashman, LK .
INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 1999, 31 (10) :1037-1051
[6]   Dopaminergic nigrostriatal projections regulate neural precursor proliferation in the adult mouse subventricular zone [J].
Baker, SA ;
Baker, KA ;
Hagg, T .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2004, 20 (02) :575-579
[7]   Influence of EGF/bFGF treatment on proliferation, early neurogenesis and infarct volume after transient focal ischemia [J].
Baldauf, K ;
Reymann, KG .
BRAIN RESEARCH, 2005, 1056 (02) :158-167
[8]   Transplantation of human embryonic stem cell-derived neural progenitors improves behavioral deficit in Parkinsonian rats [J].
Ben-Hur, T ;
Idelson, M ;
Khaner, H ;
Pera, M ;
Reinhartz, E ;
Itzik, A ;
Reubinoff, BE .
STEM CELLS, 2004, 22 (07) :1246-1255
[9]  
BERNHEIMER H, 1973, J NEUROL SCI, V20, P415, DOI 10.1016/0022-510X(73)90175-5
[10]   Relationship between the appearance of symptoms and the level of nigrostriatal degeneration in a progressive 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned macaque model of Parkinson's disease [J].
Bezard, E ;
Dovero, S ;
Prunier, C ;
Ravenscroft, P ;
Chalon, S ;
Guilloteau, D ;
Crossman, AR ;
Bioulac, B ;
Brotchie, JM ;
Gross, CE .
JOURNAL OF NEUROSCIENCE, 2001, 21 (17) :6853-6861