Dissecting the binding energy epitope of a high-affinity variant of human growth hormone: Cooperative and additive effects from combining mutations from independently selected phage display mutagenesis libraries

被引:23
作者
Bernat, B
Sun, M
Dwyer, M
Feldkamp, M
Kossiakoff, AA
机构
[1] Univ Chicago, Dept Biochem & Mol Biol, Cummings Life Sci Ctr, Chicago, IL 60637 USA
[2] Univ Chicago, Inst Biophys Dynam, Chicago, IL 60637 USA
关键词
D O I
10.1021/bi036069b
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Phage display mutagenesis is a widely used approach to engineering novel protein properties and is especially powerful in probing structure-function relationships in molecular recognition processes. The relative contributions of additive and cooperative binding forces and the influence of conformational diversity in producing a novel protein-protein interface is investigated using as a model an ultra-high-affinity receptor binding variant of human growth hormone (hGHv) that has been previously affinity matured. The modular aspect of how the mutations were grouped in the phage display libraries and combined allowed for a systematic probing of the inherent functional cross-talk between the different secondary structure elements that make up the remodeled hGHv binding surface. We performed an alanine scanning analyses of 35 hGHv residues and determined the kinetics of each variant by surface plasmon resonance (SPR). This analysis showed that there is a significant difference between the additive and cooperative binding forces existing among the selected residues in each library module, and the binding advantage of these residues is maximized over the original wild-type residue when in the context of the other mutations in the library. The degree to which residues in a particular mutagenesis library display binding cooperativity characteristics is generally correlated with the conformational plasticity of the polypeptide chain. Additionally, these cooperativity effects change when the mutations from one library are combined with the mutations from one or several of the other separate libraries. This supports the idea that significant functional cross-talk exists between the combined library modules that can affect the binding energetics of individual residues over a large distance.
引用
收藏
页码:6076 / 6084
页数:9
相关论文
共 31 条
[1]   Structural plasticity in a remodeled protein-protein interface [J].
Atwell, S ;
Ultsch, M ;
DeVos, AM ;
Wells, JA .
SCIENCE, 1997, 278 (5340) :1125-1128
[2]   Determination of the energetics governing the regulatory step in growth hormone-induced receptor homodimerization [J].
Bernat, B ;
Pal, G ;
Sun, M ;
Kossiakoff, AA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (03) :952-957
[3]   Free energy landscapes of encounter complexes in protein-protein association [J].
Camacho, CJ ;
Weng, ZP ;
Vajda, S ;
DeLisi, C .
BIOPHYSICAL JOURNAL, 1999, 76 (03) :1166-1178
[4]   A HOT-SPOT OF BINDING-ENERGY IN A HORMONE-RECEPTOR INTERFACE [J].
CLACKSON, T ;
WELLS, JA .
SCIENCE, 1995, 267 (5196) :383-386
[5]   Structural and functional analysis of the 1:1 growth hormone:receptor complex reveals the molecular basis for receptor affinity [J].
Clackson, T ;
Ultsch, MH ;
Wells, JA ;
de Vos, AM .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 277 (05) :1111-1128
[6]   RATIONAL DESIGN OF RECEPTOR-SPECIFIC VARIANTS OF HUMAN GROWTH-HORMONE [J].
CUNNINGHAM, BC ;
WELLS, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (08) :3407-3411
[7]   COMPARISON OF A STRUCTURAL AND A FUNCTIONAL EPITOPE [J].
CUNNINGHAM, BC ;
WELLS, JA .
JOURNAL OF MOLECULAR BIOLOGY, 1993, 234 (03) :554-563
[8]   ENGINEERING HUMAN PROLACTIN TO BIND TO THE HUMAN GROWTH-HORMONE RECEPTOR [J].
CUNNINGHAM, BC ;
HENNER, DJ ;
WELLS, JA .
SCIENCE, 1990, 247 (4949) :1461-1465
[9]   HIGH-RESOLUTION EPITOPE MAPPING OF HGH-RECEPTOR INTERACTIONS BY ALANINE-SCANNING MUTAGENESIS [J].
CUNNINGHAM, BC ;
WELLS, JA .
SCIENCE, 1989, 244 (4908) :1081-1085
[10]   Convergent solutions to binding at a protein-protein interface [J].
DeLano, WL ;
Ultsch, MH ;
de Vos, AM ;
Wells, JA .
SCIENCE, 2000, 287 (5456) :1279-1283