Land Cover and Soil Type Mapping From Spaceborne PolSAR Data at L-Band With Probabilistic Neural Network

被引:51
作者
Antropov, Oleg [1 ]
Rauste, Yrjo [1 ]
Astola, Heikki [1 ]
Praks, Jaan [2 ]
Hame, Tuomas [1 ]
Hallikainen, Martti T. [2 ]
机构
[1] VTT Tech Res Ctr Finland, Remote Sensing Team, Espoo 02044, Finland
[2] Aalto Univ, Sch Elect Engn, Dept Radio Sci & Engn, Espoo 02150, Finland
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2014年 / 52卷 / 09期
关键词
Boreal forest; classification; forestry; land cover; polarimetry; soil type; synthetic aperture radar (SAR); POLARIMETRIC SAR DATA; TARGET SCATTERING DECOMPOSITION; ENVIRONMENTAL-CONDITIONS; RADAR BACKSCATTER; FEATURE-SELECTION; SEASONAL-CHANGES; FOREST COVER; ALOS PALSAR; CLASSIFICATION; MOISTURE;
D O I
10.1109/TGRS.2013.2287712
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This paper evaluates performance of fully polarimetric SAR (PolSAR) data in several land cover mapping studies in the boreal forest environment, taking advantage of the high canopy penetration capability at L-band. The studies included multiclass land cover mapping, forest-nonforest delineation, and classification of soil type under vegetation. PolSAR data used in the study were collected by the ALOS PALSAR sensor in 2006-2007 over a managed boreal forest site in Finland. A supervised classification approach using selected polarimetric features in the framework of probabilistic neural network (PNN) was adopted in the study. It has no assumptions about statistics of the polarimetric features, using nonparametric estimation of probability distribution functions instead. The PNN-based method improved classification accuracy compared with standard maximum-likelihood approach. The improvement was considerably strong for soil type mapping under vegetation, indicating notable non-Gaussian effects in the PolSAR data even at L-band. The classification performance was strongly dependent on seasonal conditions. The PolSAR feature data set was further modified to include a number of recently proposed polarimetric parameters (surface scattering fraction and scattering diversity), reducing the computational complexity at practically no loss in the classification accuracy. The best obtained accuracies of up to 82.6% in five-class land cover mapping and more than 90% in forest-nonforest mapping in wall-to-wall validation indicate suitability of PolSAR data for wide-area land cover and forest mapping.
引用
收藏
页码:5256 / 5270
页数:15
相关论文
共 92 条
[1]   SEASONAL-CHANGES IN RELATIVE C-BAND BACKSCATTER OF NORTHERN FOREST COVER TYPES [J].
AHERN, FJ ;
LECKIE, DJ ;
DRIEMAN, JA .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1993, 31 (03) :668-680
[2]   Comparison of polarimetric SAR observables in terms of classification performance [J].
Alberga, V. ;
Satalino, G. ;
Staykova, D. K. .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2008, 29 (14) :4129-4150
[3]   A study of land cover classification using polarimetric SAR parameters [J].
Alberga, V. .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2007, 28 (17) :3851-3870
[4]   PolSAR Mosaic Normalization for Improved Land-Cover Mapping [J].
Antropov, Oleg ;
Rauste, Yrjo ;
Lonnqvist, Anne ;
Hame, Tuomas .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2012, 9 (06) :1074-1078
[5]   Volume Scattering Modeling in PolSAR Decompositions: Study of ALOS PALSAR Data Over Boreal Forest [J].
Antropov, Oleg ;
Rauste, Yrjo ;
Hame, Tuomas .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (10) :3838-3848
[6]   RETRIVEVAL OF SOIL MOISTURE UNDER VEGETATION USING POLARIMETRIC SCATTERING CUBES [J].
Arii, Motofumi ;
van Zyl, Jakob J. ;
Kim, Yunjin .
2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, :1323-1326
[7]   A General Characterization for Polarimetric Scattering From Vegetation Canopies [J].
Arii, Motofumi ;
van Zyl, Jakob J. ;
Kim, Yunjin .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (09) :3349-3357
[8]   ESA future earth observation explorer missions [J].
Bezy, J. -L. ;
Bensi, P. ;
Lin, C. C. ;
Durand, Y. ;
Heliere, F. ;
Regan, A. ;
Ingmann, P. ;
Langen, J. ;
Berger, M. ;
Davidson, M. ;
Rebhan, H. .
IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, :212-215
[9]   Fisher distribution for texture modeling of polarimetric SAR data [J].
Bombrun, Lionel ;
Beaulieu, Jean-Marie .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2008, 5 (03) :512-516
[10]   Analysis of space-borne SAR data for wetland mapping in Virginia riparian ecosystems [J].
Bourgeau-Chavez, LL ;
Kasischke, ES ;
Brunzell, SM ;
Mudd, JP ;
Smith, KB ;
Frick, AL .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2001, 22 (18) :3665-3687