Choosing the forcing terms in an inexact Newton method

被引:492
作者
Eisenstat, SC [1 ]
Walker, HF [1 ]
机构
[1] UTAH STATE UNIV,DEPT MATH & STAT,LOGAN,UT 84322
关键词
forcing terms; inexact Newton methods; Newton iterative methods; truncated Newton methods; Newton's method; iterative linear algebra methods; GMRES;
D O I
10.1137/0917003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An inexact Newton method is a generalization of Newton's method for solving F(x)=0, F:R(n) right arrow R(n), in which, at the kth iteration, the step s(k) from the current approximate solution x(k) is required to satisfy a condition parallel to F(x(k))+F'(x(k))s(k) parallel to less than or equal to eta(k) parallel to F(x(k)) parallel to for a ''forcing term'' eta(k) is an element of [0,1]. In typical applications, the choice of the forcing terms is critical to the efficiency of the method and can affect robustness as well. Promising choices of the forcing terms are given, their local convergence properties are analyzed, and their practical performance is shown on a representative set of test problems.
引用
收藏
页码:16 / 32
页数:17
相关论文
共 17 条
[1]  
[Anonymous], SERIES AUTOMATIC COM
[2]  
[Anonymous], LECT APPL MATH
[3]   FAST NUMERICAL-SOLUTION OF THE BIHARMONIC DIRICHLET PROBLEM ON RECTANGLES [J].
BJORSTAD, P .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1983, 20 (01) :59-71
[4]   HYBRID KRYLOV METHODS FOR NONLINEAR-SYSTEMS OF EQUATIONS [J].
BROWN, PN ;
SAAD, Y .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1990, 11 (03) :450-481
[5]  
CAI XC, 1994, IN PRESS NOTES NUMER
[6]   TRUNCATED-NEWTON ALGORITHMS FOR LARGE-SCALE UNCONSTRAINED OPTIMIZATION [J].
DEMBO, RS ;
STEIHAUG, T .
MATHEMATICAL PROGRAMMING, 1983, 26 (02) :190-212
[7]   INEXACT NEWTON METHODS [J].
DEMBO, RS ;
EISENSTAT, SC ;
STEIHAUG, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (02) :400-408
[8]   GLOBALLY CONVERGENT INEXACT NEWTON METHODS [J].
EISENSTAT, SC ;
WALKER, HF .
SIAM JOURNAL ON OPTIMIZATION, 1994, 4 (02) :393-422
[9]   CONTINUATION-CONJUGATE GRADIENT METHODS FOR THE LEAST-SQUARES SOLUTION OF NONLINEAR BOUNDARY-VALUE PROBLEMS [J].
GLOWINSKI, R ;
KELLER, HB ;
REINHART, L .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1985, 6 (04) :793-832
[10]   A POINTWISE QUASI-NEWTON METHOD FOR INTEGRAL-EQUATIONS [J].
KELLEY, CT ;
NORTHRUP, JI .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1988, 25 (05) :1138-1155