Auxiliary representations of Lie algebras and the BRST constructions

被引:15
作者
Burdík, C
Pashnev, A
Tsulaia, M
机构
[1] Czech Tech Univ, Dept Math, Prague 12000 2, Czech Republic
[2] Joint Inst Nucl Res, Bogoliubov Theoret Lab, Dubna 141980, Moscow Region, Russia
关键词
D O I
10.1142/S021773230000027X
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The method of constructing auxiliary representations for a given Lie algebra is discussed in the framework of the ERST approach. The corresponding ERST charge turns out to be non-hermitian. This problem is solved by the introduction of the additional kernel operator in the definition of the scalar product in the Fock space. The existence of the kernel operator is proven for any Lie algebra.
引用
收藏
页码:281 / 291
页数:11
相关论文
共 16 条
[1]   RELATIVISTIC S-MATRIX OF DYNAMICAL-SYSTEMS WITH BOSON AND FERMION CONSTRAINTS [J].
BATALIN, IA ;
VILKOVISKY, GA .
PHYSICS LETTERS B, 1977, 69 (03) :309-312
[2]   OPERATORIAL QUANTIZATION OF DYNAMIC-SYSTEMS SUBJECT TO 2ND CLASS CONSTRAINTS [J].
BATALIN, IA ;
FRADKIN, ES .
NUCLEAR PHYSICS B, 1987, 279 (3-4) :514-528
[3]   REALIZATIONS OF THE REAL SEMISIMPLE LIE-ALGEBRAS - A METHOD OF CONSTRUCTION [J].
BURDIK, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (16) :3101-3111
[4]  
Dixmier Jacques, 1974, ALGEBRES ENVELOPPANT
[5]  
Egorian E., 1993, THEOR MATH PHYS, V94, P241
[6]   REALIZATION OF THE SCHWINGER TERM IN THE GAUSS LAW AND THE POSSIBILITY OF CORRECT QUANTIZATION OF A THEORY WITH ANOMALIES [J].
FADDEEV, LD ;
SHATASHVILI, SL .
PHYSICS LETTERS B, 1986, 167 (02) :225-228
[7]   QUANTIZATION OF RELATIVISTIC SYSTEMS WITH CONSTRAINTS [J].
FRADKIN, ES ;
VILKOVISKY, GA .
PHYSICS LETTERS B, 1975, B 55 (02) :224-226
[8]  
GELFAND IM, 1950, DOKL AKAD NAUK SSSR+, V71, P825
[9]  
GERSHUN VD, 1987, TEOR MAT FIZ, V73, P294
[10]   MASSLESS BOSONIC FREE FIELDS [J].
LABASTIDA, JMF .
PHYSICAL REVIEW LETTERS, 1987, 58 (06) :531-534