Chronic restriction of cerebral blood flow in hypoperfused Wistar rats has been proposed as a new model of cerebrovascular-type dementia. Using this model, we have investigated central monoaminergic neuronal systems that are closely related to higher brain function. Monoamine and monoamine-metabolite levels were determined, as relative monoaminergic markers, at 1 day and 1,3,6 and 12 weeks after the bilateral occlusion of common carotid arteries. Dopaminergic changes in the frontal cortex and striatum were observed in hypoperfused rats at 1-3 weeks following occlusion. Serotonergic changes were recognized at four brain regions examined (frontal cortex, hippocampus, striatum and thalamus+midbrain). In particular, the immediate enhancement of serotonin turnover in the striatum appeared to influence the reaction to the acute ischemic attack such as vasoconstriction produced by hypoperfusion. Our findings suggest that chronic cerebral hypoperfusion induces transient reversible changes in central monoaminergic neuronal function within three weeks of ligation of carotid arteries. This time interval seems to represent a turning point in the process of chronic cerebral hypoperfusion-induced progressive brain injury.