Detection and mapping of quantitative trait loci for haloperidol-induced catalepsy in a C57BL/6J x DBA/2J F2 intercross

被引:18
作者
Patel, NV
Hitzemann, RJ [1 ]
机构
[1] SUNY Stony Brook, Dept Psychiat, Stony Brook, NY 11794 USA
[2] SUNY Stony Brook, Dept Neurobiol & Behav, Stony Brook, NY 11794 USA
[3] Vet Affairs Med Ctr, Res & Psychiat Serv, Northport, NY 11768 USA
关键词
QTL; inbred; mouse; haloperidol; catalepsy; dopamine;
D O I
10.1023/A:1021653732147
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
A genomewide scan was conducted to detect quantitative trait loci (QTLs) for haloperidol-induced catalepsy in a C57BL/6J (B6) x DBA/2J (D2) F-2 intercross (N = 678). Significant QTLs (LOD, >4.3) were detected on chromosomes I and 9. The relative position of the QTL on chromosome 1 is similar to open-field activity QTLs previously identified by Flint et al. (1995) and Gershenfeld et nl. (1997). Given the broad confidence intervals for these QTLs, such associations must be viewed cautiously. However, these data are consistent with the report of Kline et al. (1998), who found a significant genetic associations between catalepsy and open-field activity. The QTL interval on chromosome 9 stretched from approximately 25 to 55 cM; this region contains numerous candidate genes, including Drd2, Ncam, Acat1, and Htr1b. The data also suggest the presence of a second QTL on chromosome 9 (LoD, >3.5) in Vie proximal region of the chromosome. Potential candidate genes in this region include Penk2 and Gria4. Overall, these data support our previous observation (Kanes et al., 1996) that for the B6 x D2 genotypes, one or more polymorphisms on chromosome 9 are associated with the variance in haloperidol response.
引用
收藏
页码:303 / 310
页数:8
相关论文
共 29 条
[1]   Type I and Type II error rates for quantitative trait loci (QTL) mapping studies using recombinant inbred mouse strains [J].
Belknap, JK ;
Mitchell, SR ;
OToole, LA ;
Helms, ML ;
Crabbe, JC .
BEHAVIOR GENETICS, 1996, 26 (02) :149-160
[2]   Genetic determinants of sensitivity to diazepam in inbred mice [J].
Crabbe, JC ;
Gallaher, EJ ;
Cross, SJ ;
Belknap, JK .
BEHAVIORAL NEUROSCIENCE, 1998, 112 (03) :668-677
[3]  
Dains K, 1996, J PHARMACOL EXP THER, V279, P1430
[4]  
DARVASI A, 1993, GENETICS, V134, P943
[5]   A comprehensive genetic map of the mouse genome [J].
Dietrich, WF ;
Miller, J ;
Steen, R ;
Merchant, MA ;
DamronBoles, D ;
Husain, Z ;
Dredge, R ;
Daly, MJ ;
Ingalls, KA ;
OConnor, TJ ;
Evans, CA ;
DeAngelis, MM ;
Levinson, DM ;
Kruglyak, L ;
Goodman, N ;
Copeland, NG ;
Jenkins, NA ;
Hawkins, TL ;
Stein, L ;
Page, DC ;
Lander, ES .
NATURE, 1996, 380 (6570) :149-152
[6]  
DIXON WJ, 1965, J AM STAT ASSOC, P976
[7]  
Flint J, 1996, J MOL MED-JMM, V74, P515
[8]   A SIMPLE GENETIC-BASIS FOR A COMPLEX PSYCHOLOGICAL TRAIT IN LABORATORY MICE [J].
FLINT, J ;
CORLEY, R ;
DEFRIES, JC ;
FULKER, DW ;
GRAY, JA ;
MILLER, S ;
COLLINS, AC .
SCIENCE, 1995, 269 (5229) :1432-1435
[9]   Mapping quantitative trait loci for open-field behavior in mice [J].
Gershenfeld, HK ;
Neumann, PE ;
Mathis, C ;
Crawley, JN ;
Li, XH ;
Paul, SM .
BEHAVIOR GENETICS, 1997, 27 (03) :201-210
[10]  
HITZEMANN B, 1994, J PHARMACOL EXP THER, V271, P969