Morphological iterative closest point algorithm

被引:36
作者
Kapoutsis, CA [1 ]
Vavoulidis, CP [1 ]
Pitas, I [1 ]
机构
[1] Aristotelian Univ Salonika, Dept Informat, GR-54006 Salonika, Greece
关键词
iterative closest point algorithm; Voronoi tesselation;
D O I
10.1109/83.799892
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work presents a method for the registration of three-dimensional (3-D) shapes. The method is based on the iterative closest point (ICP) algorithm and improves it through the use of a 3-D volume containing the shapes to be registered. The Voronoi diagram of the "model" shape points is first constructed in the volume. Then this is used for the calculation of the closest point operator. This way a dramatic decrease of the computational cost is achieved.
引用
收藏
页码:1644 / 1646
页数:3
相关论文
共 16 条
[1]  
[Anonymous], 1993, Digital Image Processing Algorithms
[2]   A METHOD FOR REGISTRATION OF 3-D SHAPES [J].
BESL, PJ ;
MCKAY, ND .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1992, 14 (02) :239-256
[3]   DISTANCE TRANSFORMATIONS IN DIGITAL IMAGES [J].
BORGEFORS, G .
COMPUTER VISION GRAPHICS AND IMAGE PROCESSING, 1986, 34 (03) :344-371
[4]  
Haralick R. M., 1992, COMPUTER ROBOT VISIO
[5]  
KOTROPOULOS C, 1993, P INT C AC SPEECH SI
[6]   2-DIMENSIONAL VORONOI DIAGRAMS IN THE LP-METRIC [J].
LEE, DT .
JOURNAL OF THE ACM, 1980, 27 (04) :604-618
[7]   MATHEMATICAL MORPHOLOGY AND CONVOLUTIONS [J].
MAZILLE, JE .
JOURNAL OF MICROSCOPY-OXFORD, 1989, 156 :3-13
[8]  
Pitas I, 1990, NONLINEAR DIGITAL FI
[9]  
PITAS I, 1998, ADV DIGITAL COMPUTAT, P227
[10]  
Preparata F., 2012, Computational geometry: an introduction