Overexpression of neuropeptide Y induced by brain-derived neurotrophic factor in the rat hippocampus is long lasting

被引:69
作者
Reibel, S
Vivien-Roels, B
Lê, BT
Larmet, Y
Carnahan, J
Marescaux, C
Depaulis, A
机构
[1] Univ Strasbourg, Fac Med, INSERM, U398, F-67085 Strasbourg, France
[2] Univ Strasbourg, CNRS, UMR 7518, F-67000 Strasbourg, France
[3] Univ Strasbourg, CNRS, UMR 7519, F-67084 Strasbourg, France
[4] Amgen Ctr, Newbury Pk, CA 91320 USA
关键词
GABA; kindling; neurotrophin; somatostatin;
D O I
10.1046/j.1460-9568.2000.00941.x
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Brain-derived neurotrophic factor (BDNF) plays an important role in hippocampal neuroplasticity. In particular, BDNF upregulation in the hippocampus by epileptic seizures suggests its involvement in the neuronal rearrangements accompanying epileptogenesis. We have shown previously that chronic infusion of BDNF in the hippocampus induces a long-term delay in hippocampal kindling progression. Although BDNF has been shown to enhance the excitability of this structure upon acute application, long-term transcriptional regulations leading to increased inhibition within the hippocampus may account for its suppressive effects on epileptogenesis. Therefore, the long-term consequences of a 7-day chronic intrahippocampal infusion of BDNF (12 mu g/day) were investigated up to 2 weeks after the end of the infusion, on the expression of neurotransmitters contained in inhibitory hippocampal interneurons and which display anti-epileptic properties. Our results show that BDNF does not modify levels of immunostaining for glutamic acid decarboxylase, the rate-limiting enzyme for gamma-aminobutyric acid (GABA) synthesis, and somatostatin. Conversely, BDNF induces a long-lasting increase of neuropeptide Y (NPY) in the hippocampus, measured by immunohistochemistry and radioimmunoassay, outlasting the end of the infusion by at least 7 days. The distribution of BDNF-induced neuropeptide Y immunoreactivity is similar to the pattern observed in animals submitted to hippocampal kindling, with the exception of mossy fibres which only become immunoreactive following seizure activity. The enduring increase of neuropeptide Y expression induced by BDNF in the hippocampus suggests that this neurotrophin can trigger long-term genomic effects, which may contribute to the neuroplasticity of this structure, in particular during epileptogenesis.
引用
收藏
页码:595 / 605
页数:11
相关论文
共 77 条
[1]  
Adams B, 1997, J NEUROSCI, V17, P5288
[2]   Neurotrophin trafficking by anterograde transport [J].
Altar, CA ;
DiStefano, PS .
TRENDS IN NEUROSCIENCES, 1998, 21 (10) :433-437
[3]   Assessing telecommunications technology as a tool for urban community building [J].
Anderson, TE ;
Melchior, A .
JOURNAL OF URBAN TECHNOLOGY, 1995, 3 (01) :29-44
[4]   Glial cell line-derived neurotrophic factor attenuates the excitotoxin-induced behavioral and neurochemical deficits in a rodent model of Huntington's disease [J].
Araujo, DM ;
Hilt, DC .
NEUROSCIENCE, 1997, 81 (04) :1099-1110
[5]   CALCIUM-BINDING PROTEINS IN THE NERVOUS-SYSTEM [J].
BAIMBRIDGE, KG ;
CELIO, MR ;
ROGERS, JH .
TRENDS IN NEUROSCIENCES, 1992, 15 (08) :303-308
[6]   HIPPOCAMPAL DAMAGE AND KAINIC ACID INJECTION INDUCE A RAPID INCREASE IN MESSENGER-RNA FOR BDNF AND NGF IN THE RAT-BRAIN [J].
BALLARIN, M ;
ERNFORS, P ;
LINDEFORS, N ;
PERSSON, H .
EXPERIMENTAL NEUROLOGY, 1991, 114 (01) :35-43
[7]   Knock-out mice reveal a critical antiepileptic role for neuropeptide Y [J].
Baraban, SC ;
Hollopeter, G ;
Erickson, JC ;
Schwartzkroin, PA ;
Palmiter, RD .
JOURNAL OF NEUROSCIENCE, 1997, 17 (23) :8927-8936
[8]   Comparison of neurotrophin regulation of human and rat neuropeptide Y (NPY) neurons: Induction of NPY production in aggregate cultures derived from rat but not from human fetal brains [J].
Barnea, A ;
AguilaMansilla, N ;
Chute, HT ;
Welcher, AA .
BRAIN RESEARCH, 1996, 732 (1-2) :52-60
[9]   BRAIN-DERIVED NEUROTROPHIC FACTOR INDUCES FUNCTIONAL EXPRESSION AND PHENOTYPIC DIFFERENTIATION OF CULTURED FETAL NEUROPEPTIDE Y-PRODUCING NEURONS [J].
BARNEA, A ;
CHO, G ;
LU, G ;
MATHIS, M .
JOURNAL OF NEUROSCIENCE RESEARCH, 1995, 42 (05) :638-647
[10]  
Bijak Maria, 1995, Polish Journal of Pharmacology, V47, P333