Non-Fickian transport in homogeneous unsaturated repacked sand

被引:135
作者
Bromly, M [1 ]
Hinz, C [1 ]
机构
[1] Univ Western Australia, Sch Earth & Geog Sci, Crawley, WA 6009, Australia
关键词
continuous time random walk; repacked sand; scale effect; unsaturated transport;
D O I
10.1029/2003WR002579
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
[1] It is commonly assumed a priori that solute transport experiments conducted in homogeneously repacked laboratory columns can be described by the advective-dispersive (AD) or single-rate mobile-immobile (MIM) transport model. To investigate this, nonreactive transport through macroscopically homogeneous repacked unsaturated sand was studied at two water contents using laboratory columns of diameter of 11 cm and lengths of 10, 20, and 40 cm. Non-Fickian behavior was found to dominate transport at this scale, with long breakthrough curve (BTC) tailing persistent over the range of column lengths tested. Measured BTC tails were well described by the single-rate MIM model at each depth; however, over the range of travel distances studied BTC tailing was better explained as a result of stochastic-convective (SC) transport or continuous time random walk (CTRW). The SC model was applied using the BTC measured at 10 cm as the probability density function to make predictions to subsequent depths. The CTRW model spreading parameter (beta) remained approximately constant across the range of both travel distances and water contents considered. It is concluded that the assumption of a single-rate MIM model cannot be made a priori for macroscopically homogeneous unsaturated sands. In this case, variability between replicates prevented identification of whether a SC transfer function or CTRW provided the best description of transport. These results demonstrate the variability in transport as a result of heterogeneities in column packing, even for macroscopically homogeneous sand, and emphasize the importance of studying transport over a range of travel distances in order to allow prediction of transport.
引用
收藏
页码:W074021 / W0740212
页数:12
相关论文
共 67 条
[1]   WATER-MOVEMENT THROUGH AN AGGREGATED, GRAVELLY OXISOL FROM CAMEROON [J].
ANAMOSA, PR ;
NKEDIKIZZA, P ;
BLUE, WG ;
SARTAIN, JB .
GEODERMA, 1990, 46 (1-3) :263-281
[2]   Nonequilibrium solute transport parameters and their physical significance: Numerical and experimental results [J].
Bajracharya, K ;
Barry, DA .
JOURNAL OF CONTAMINANT HYDROLOGY, 1997, 24 (3-4) :185-204
[3]  
Bear J., 1988, DYNAMICS FLUIDS PORO
[4]   Solute transport as related to soil structure in unsaturated intact soil blocks [J].
Bejat, L ;
Perfect, E ;
Quisenberry, VL ;
Coyne, MS ;
Haszler, GR .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 2000, 64 (03) :818-826
[5]   Anomalous transport in random fracture networks [J].
Berkowitz, B ;
Scher, H .
PHYSICAL REVIEW LETTERS, 1997, 79 (20) :4038-4041
[6]   ON CHARACTERIZATION OF ANOMALOUS-DISPERSION IN POROUS AND FRACTURED MEDIA [J].
BERKOWITZ, B ;
SCHER, H .
WATER RESOURCES RESEARCH, 1995, 31 (06) :1461-1466
[7]   Anomalous transport in laboratory-scale, heterogeneous porous media [J].
Berkowitz, B ;
Scher, H ;
Silliman, SE .
WATER RESOURCES RESEARCH, 2000, 36 (01) :149-158
[8]   Theory of anomalous chemical transport in random fracture networks [J].
Berkowitz, B ;
Scher, H .
PHYSICAL REVIEW E, 1998, 57 (05) :5858-5869
[9]   Application of continuous time random walk theory to tracer test measurements in fractured and heterogeneous porous media [J].
Berkowitz, B ;
Kosakowski, G ;
Margolin, G ;
Scher, H .
GROUND WATER, 2001, 39 (04) :593-604
[10]   The role of probabilistic approaches to transport theory in heterogeneous media [J].
Berkowitz, B ;
Scher, H .
TRANSPORT IN POROUS MEDIA, 2001, 42 (1-2) :241-263