Role of the aromatic hydrocarbon receptor and [Ah] gene battery in the oxidative stress response, cell cycle control, and apoptosis

被引:778
作者
Nebert, DW
Roe, AL
Dieter, MZ
Solis, WA
Yang, Y
Dalton, TP
机构
[1] Univ Cincinnati, Med Ctr, Dept Environm Hlth, Cincinnati, OH 45267 USA
[2] Univ Cincinnati, Med Ctr, Ctr Environm Genet, Cincinnati, OH 45267 USA
关键词
oxidative stress; Ah] gene battery; mouse genetics; Ah receptor; endogenous ligand for Ah receptor; cytochrome P450 1A1; cytochrome P450 1A2; NAD(P)H : quinone oxidoreductase; UDP glucuronosyltransferase; aldehyde dehydrogenase; glutathione transferase; 14CoS mouse line; human hereditary tyrosinemia type 1; mouse hepatoma Hepa-1c1c7 wild-type and mutant cell culture lines; SV40-transformed cell culture lines; large T antigen; cell cycle; p53 (TRP53) protein; retinoblastoma (RB1) protein; apoptosis; dioxin;
D O I
10.1016/S0006-2952(99)00310-X
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The chronology and history of characterizing the aromatic hydrocarbon [Ah] battery is reviewed. This battery represents the Ah receptor (AHR)-mediated control of at least six, and probably many more, dioxin-inducible genes; two cytochrome P450 genes-P450 1A1 and 1A2 (Cyp1a1, Cyp1a2)-and four non-P450 genes, have experimentally been documented to be members of this battery. Metabolism of endogenous and exogenous substrates by perhaps every P450 enzyme, but certainly CYP1A1 and CYP1A2 (which are located, in part, in the mitochondrion), have been shown to cause reactive oxygenated metabolite (ROM) mediated oxidative stress. Oxidative stress activates genes via the electrophile response element (EPRE) DNA motif, whereas dioxin (acutely) activates genes via the AHR-mediated aromatic hydrocarbon response clement (AHRE) DNA motif. In contrast to dioxin,,AHR ligands that are readily metabolized to ROMs (e.g. benzo[a]pyrene, beta-naphthoflavone) activate genes via both AHREs and the EPRE. The importance of the AHR in cell cycle regulation and apoptosis has just begun to be realized. Current evidence suggests that the CYP1A1 and CYP1A2 enzymes might control the level of the putative endogenous Ligand of the AHR, but that CYP1A1/1A2 metabolism generates ROM-mediated oxidative stress which can be ameliorated by the four non P450 EPRE-driven genes in the [Ah] battery. Oxidative stress is a major signal in precipitating apoptosis; however, the precise mechanism, or molecule, which determines the cell's decision between apoptosis and continuation with the cell cycle, remains to be elucidated. The total action of,AHR and the [Ah] battery genes therefore represents a pivotal upstream event in the apoptosis cascade, providing an intricate balance between promoting and preventing ROM-mediated oxidative stress. These proposed endogenous functions of the AHR and [Ah] enzymes are, of course, in addition to the frequently described functions of "metabolic potentiation" and "detoxification" of various foreign chemicals. BIOCHEM PHARMACOL 59;1:65-85, 2000. (C) 1999 Elsevier Science Inc.
引用
收藏
页码:65 / 85
页数:21
相关论文
共 199 条
[1]   Adverse reproductive outcomes in the transgenic Ah receptor-deficient mouse [J].
Abbott, BD ;
Schmid, JE ;
Pitt, JA ;
Buckalew, AR ;
Wood, CR ;
Held, GA ;
Diliberto, JJ .
TOXICOLOGY AND APPLIED PHARMACOLOGY, 1999, 155 (01) :62-70
[2]   AhR, ARNT, and CYP1A1 mRNA quantitation in cultured human embryonic palates exposed to TCDD and comparison with mouse palate in vivo and in culture [J].
Abbott, BD ;
Held, GA ;
Wood, CR ;
Buckalew, AR ;
Brown, JG ;
Schmid, J .
TOXICOLOGICAL SCIENCES, 1999, 47 (01) :62-75
[3]   RT-PCR quantification of AHR, ARNT, GR, and CYP1A1 mRNA in craniofacial tissues of embryonic mice exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin and hydrocortisone [J].
Abbott, BD ;
Schmid, JE ;
Brown, JG ;
Wood, CR ;
White, RD ;
Buckalew, AR ;
Held, GA .
TOXICOLOGICAL SCIENCES, 1999, 47 (01) :76-85
[4]   Targeting of NH2-terminal-processed microsomal protein to mitochondria: A novel pathway for the biogenesis of hepatic mitochondrial P450MT2 [J].
Addya, S ;
Anandatheerthavarada, HK ;
Biswas, G ;
Bhagwat, SV ;
Mullick, J ;
Avadhani, NG .
JOURNAL OF CELL BIOLOGY, 1997, 139 (03) :589-599
[5]   Regulation of JNK signaling by GSTp [J].
Adler, V ;
Yin, ZM ;
Fuchs, SY ;
Benezra, M ;
Rosario, L ;
Tew, KD ;
Pincus, MR ;
Sardana, M ;
Henderson, CJ ;
Wolf, CR ;
Davis, RJ ;
Ronai, Z .
EMBO JOURNAL, 1999, 18 (05) :1321-1334
[6]   The p53 network [J].
Agarwal, ML ;
Taylor, WR ;
Chernov, MV ;
Chernova, OB ;
Stark, GR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (01) :1-4
[7]   Nrf2, a Cap'n'Collar transcription factor, regulates induction of the heme oxygenase-1 gene [J].
Alam, J ;
Stewart, D ;
Touchard, C ;
Boinapally, S ;
Choi, AMK ;
Cook, JL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (37) :26071-26078
[8]   OXIDANTS, ANTIOXIDANTS, AND THE DEGENERATIVE DISEASES OF AGING [J].
AMES, BN ;
SHIGENAGA, MK ;
HAGEN, TM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (17) :7915-7922
[9]   Physiological role of the N-terminal processed P4501A1 targeted to mitochondria in erythromycin metabolism and reversal of erythromycin-mediated inhibition of mitochondrial protein synthesis [J].
Anandatheerthavarada, HK ;
Vijayasarathy, C ;
Bhagwat, SV ;
Biswas, G ;
Mullick, J ;
Avadhani, NG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (10) :6617-6625
[10]   Mitochondrial phospholipid hydroperoxide glutathione peroxidase plays a major role in preventing oxidative injury to cells [J].
Arai, M ;
Imai, H ;
Koumura, T ;
Yoshida, M ;
Emoto, K ;
Umeda, M ;
Chiba, N ;
Nakagawa, Y .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (08) :4924-4933