Effects of NO on mitochondrial function in cardiomyocytes: Pathophysiological relevance

被引:69
作者
Davidson, Sean M.
Duchen, Michael R.
机构
[1] UCL Hosp, Royal Free & Univ Coll Med Sch, Hatter Cardiovasc Inst, Dept Med, London WC1E 6HX, England
[2] UCL, Dept Physiol, London, England
[3] UCL, Mitochondrial Biol Grp, London, England
关键词
nitric oxide; mitochondria; cardiomyocytes;
D O I
10.1016/j.cardiores.2006.01.019
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Although the specific roles of nitric oxide (NO) in the heart in general and on cardiac mitochondria in particular remain controversial, it is now clear that both endogenous and exogenous sources of NO exert important modulatory effects on mitochondrial function. There is also growing evidence that NO can be produced within the mitochondria themselves. NO can influence respiratory activity, both through direct effects on the respiratory chain or indirectly via modulation of mitochondrial calcium accumulation. At pathological concentrations, NO can cause irreversible alterations in respiratory function and can also interact with reactive oxygen species (ROS) to form reactive nitrogen species, which may further impair mitochondrial respiration and can even lead to opening of the mitochondrial permeability transition pore and cell death. Diabetes, aging, myocardial ischemia, and heart failure have all been associated with altered ROS generation, which can alter the delicate regulatory balance of effects of NO in the mitochondria. As NO competes with oxygen at cytochrome oxidase, it can be argued that experiments exploring the roles of NO on mitochondrial respiration should be performed at physiological (i.e. relatively low) oxygen tensions. Improvements in techniques, and a gradual appreciation of the many potential pitfalls in studying mitochondrial NO, are leading to a recognition of the role of NO in the regulation of mitochondrial function in the heart in health and disease. (c) 2006 European Society of Cardiology. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:10 / 21
页数:12
相关论文
共 129 条
[1]   Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms [J].
Barouch, LA ;
Harrison, RW ;
Skaf, MW ;
Rosas, GO ;
Cappola, TP ;
Kobeissi, ZA ;
Hobai, IA ;
Lemmon, CA ;
Burnett, AL ;
O'Rourke, B ;
Rodriguez, ER ;
Huang, PL ;
Lima, JAC ;
Berkowitz, DE ;
Hare, JM .
NATURE, 2002, 416 (6878) :337-340
[2]   Mitochondrial nitric oxide synthase: A ubiquitous regulator of oxidative phosphorylation? [J].
Bates, TE ;
Loesch, A ;
Burnstock, G ;
Clark, JB .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1996, 218 (01) :40-44
[3]   The cardioprotective and mitochondrial depolarising properties of exogenous nitric oxide in mouse heart [J].
Bell, RM ;
Maddock, HL ;
Yellon, DM .
CARDIOVASCULAR RESEARCH, 2003, 57 (02) :405-415
[4]   Rapid desensitization of the nitric oxide receptor, soluble guanylyl cyclase, underlies diversity of cellular cGMP responses [J].
Bellamy, TC ;
Wood, J ;
Goodwin, DA ;
Garthwaite, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (06) :2928-2933
[5]   The effect of nitric oxide on cell respiration:: A key to understanding its role in cell survival or death [J].
Beltrán, B ;
Mathur, A ;
Duchen, MR ;
Erusalimsky, JD ;
Moncada, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (26) :14602-14607
[6]   Xanthine oxicloreductase and cardiovascular disease: molecular mechanisms and pathophysiological implications [J].
Berry, CE ;
Hare, JM .
JOURNAL OF PHYSIOLOGY-LONDON, 2004, 555 (03) :589-606
[8]  
Bolli R, 1997, CIRC RES, V81, P1094
[9]   Reversal of nitric oxide-, peroxynitrite- and S-nitrosothiol-induced inhibition of mitochondrial respiration or complex I activity by light and thiols [J].
Borutaite, V ;
Budriunaite, A ;
Brown, GC .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2000, 1459 (2-3) :405-412
[10]   NITRIC-OXIDE SYNTHASE COMPLEXED WITH DYSTROPHIN AND ABSENT FROM SKELETAL-MUSCLE SARCOLEMMA IN DUCHENNE MUSCULAR-DYSTROPHY [J].
BRENMAN, JE ;
CHAO, DS ;
XIA, HH ;
ALDAPE, K ;
BREDT, DS .
CELL, 1995, 82 (05) :743-752