Localized Electronic States from Surface Hydroxyls and Polarons in TiO2(110)

被引:191
作者
Deskins, N. Aarori [1 ]
Rousseau, Roger [1 ]
Dupuis, Michel [1 ]
机构
[1] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA
关键词
OXYGEN VACANCIES; TRANSITION-METAL; TIO2; PSEUDOPOTENTIALS; OXIDES; RUTILE;
D O I
10.1021/jp9037655
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hydroxyls On a TiO2 surface and photoinduced e(-) polarons give rise to excess charges, the electronic structure of which is critical to the fundamental understanding of their role in the reactivity Of Surface absorbates and other photochemical processes. In this paper, we report oil a DFT+U characterization of the electronic structure of one excess electron in bare and singly hydroxylated rutile (110) surfaces. The excess electron has the electronic structure of a small polaron with its spin density and associated lattice distortion localized around a single site. Calculations indicate that the most stable Ti trapping site in both bare and hydroxylated surfaces resides in the first subsurface layer under the Ti-Se grow. However, trapping energy differences between several Ti sites are within 0,2 eV, indicating that the Boltzmann population of these sites is significant at room temperature and that the excess electron will appear as fractionally occupying several sites. On the basis of earlier calculations, the activation barrier for electron hopping from site to site is small (<0.1 eV). The stability ordering of the different Ti sites is very similar for the bare and hydroxylated surface, suggesting that the hydroxyl only weakly perturbs the surface electronic structure.
引用
收藏
页码:14583 / 14586
页数:4
相关论文
共 21 条
[1]   EFFECTS OF SURFACE OXYGEN VACANCIES ON ELECTRONIC STATES OF TIO2(110), TIO2(001) AND SRTIO3(001) SURFACES [J].
AIURA, Y ;
NISHIHARA, Y ;
HARUYAMA, Y ;
KOMEDA, T ;
KODAIRA, S ;
SAKISAKA, Y ;
MARUYAMA, T ;
KATO, H .
PHYSICA B, 1994, 194 (pt 1) :1215-1216
[2]   Oxygen vacancies and OH species in rutile and anatase TiO2 polymorphs [J].
Bonapasta, Aldo Amore ;
Filippone, Francesco ;
Mattioli, Giuseppe ;
Alippi, Paola .
CATALYSIS TODAY, 2009, 144 (1-2) :177-182
[3]   Effect of on-site Coulomb repulsion term U on the band-gap states of the reduced rutile (110) TiO2 surface [J].
Calzado, Carmen J. ;
Hernandez, Norge Cruz ;
Sanz, Javier Fdez .
PHYSICAL REVIEW B, 2008, 77 (04)
[4]   CONCEPTUAL ASPECTS OF STRUCTURE PROPERTY CORRELATIONS AND ELECTRONIC INSTABILITIES, WITH APPLICATIONS TO LOW-DIMENSIONAL TRANSITION-METAL OXIDES [J].
CANADELL, E ;
WHANGBO, MH .
CHEMICAL REVIEWS, 1991, 91 (05) :965-1034
[5]   Electron transport via polaron hopping in bulk TiO2:: A density functional theory characterization [J].
Deskins, N. Aaron ;
Dupuis, Michel .
PHYSICAL REVIEW B, 2007, 75 (19)
[6]   Electronic structure of defect states in hydroxylated and reduced rutile TiO2(110) surfaces [J].
Di Valentin, Cristiana ;
Pacchioni, Gianfranco ;
Selloni, Annabella .
PHYSICAL REVIEW LETTERS, 2006, 97 (16)
[7]   Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study [J].
Dudarev, SL ;
Botton, GA ;
Savrasov, SY ;
Humphreys, CJ ;
Sutton, AP .
PHYSICAL REVIEW B, 1998, 57 (03) :1505-1509
[8]   Excess electron states in reduced bulk anatase TiO2: Comparison of standard GGA, GGA plus U, and hybrid DFT calculations [J].
Finazzi, Emanuele ;
Di Valentin, Cristiana ;
Pacchioni, Gianfranco ;
Selloni, Annabella .
JOURNAL OF CHEMICAL PHYSICS, 2008, 129 (15)
[9]   Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges [J].
Ganduglia-Pirovano, M. Veronica ;
Hofmann, Alexander ;
Sauer, Joachim .
SURFACE SCIENCE REPORTS, 2007, 62 (06) :219-270
[10]   Separable dual-space Gaussian pseudopotentials [J].
Goedecker, S ;
Teter, M ;
Hutter, J .
PHYSICAL REVIEW B, 1996, 54 (03) :1703-1710