Cerebral perturbations provoked by prolonged exercise

被引:278
作者
Nybo, L [1 ]
Secher, NH
机构
[1] August Krogh Inst, Dept Human Physiol, Exercise & Sport Res Inst, Univ Pk 13, DK-2100 Copenhagen, Denmark
[2] Univ Copenhagen, Rigshosp, Copenhagen Muscle Res Ctr, Dept Anaesthesia, DK-2100 Copenhagen, Denmark
关键词
D O I
10.1016/j.pneurobio.2004.03.005
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
This review addresses cerebral metabolic and neurohumoral alterations during prolonged exercise in humans with special focus on associations with fatigue. Global energy turnover in the brain is unaltered by the transition from rest to moderately intense exercise, apparently because exercise-induced activation of some brain regions including cortical motor areas is compensated for by reduced activity in other regions of the brain. However, strenuous exercise is associated with cerebral metabolic and neurohumoral alterations that may relate to central fatigue. Fatigue should be acknowledged as a complex phenomenon influenced by both peripheral and central factors. However, failure to drive the motorneurons adequately as a consequence of neurophysiological alterations seems to play a dominant role under some circumstances. During exercise with hyperthermia excessive accumulation of heat in the brain due to impeded heat removal by the cerebral circulation may elevate the brain temperature to >40 degreesC and impair the ability to sustain maximal motor activation. Also, when prolonged exercise results in hypoglycaemia, perceived exertion increases at the same time as the cerebral glucose uptake becomes low, and centrally mediated fatigue appears to arise as the cerebral energy turnover becomes restricted by the availability of substrates for the brain. Changes in serotonergic activity, inhibitory feed-back from the exercising muscles, elevated ammonia levels, and alterations in regional dopaminergic activity may also contribute to the impaired voluntary activation of the motorneurons after prolonged and strenuous exercise. Furthermore, central fatigue may involve depletion of cerebral glycogen stores, as signified by the observation that following exhaustive exercise the cerebral glucose uptake increases out of proportion to that of oxygen. In summary, prolonged exercise may induce homeostatic disturbances within the central nervous system (CNS) that subsequently attenuates motor activation. Therefore, strenuous exercise is a challenge not only to the cardiorespiratory and locomotive systems but also to the brain. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:223 / 261
页数:39
相关论文
共 536 条
[1]   Training-induced changes in neural function [J].
Aagaard, P .
EXERCISE AND SPORT SCIENCES REVIEWS, 2003, 31 (02) :61-67
[2]   Increased rate of force development and neural drive of human skeletal muscle following resistance training [J].
Aagaard, P ;
Simonsen, EB ;
Andersen, JL ;
Magnusson, P ;
Dyhre-Poulsen, P .
JOURNAL OF APPLIED PHYSIOLOGY, 2002, 93 (04) :1318-1326
[3]   Administration of a GABA(B) agonist baclofen before running to exhaustion in the rat: Effects on performance and on some indicators of fatigue [J].
Abdelmalki, A ;
Merino, D ;
Bonneau, D ;
Bigard, AX ;
Guezennec, CY .
INTERNATIONAL JOURNAL OF SPORTS MEDICINE, 1997, 18 (02) :75-78
[4]   SUBSTRATE TURNOVER DURING PROLONGED EXERCISE IN MAN - SPLANCHNIC AND LEG METABOLISM OF GLUCOSE, FREE FATTY-ACIDS, AND AMINO-ACIDS [J].
AHLBORG, G ;
FELIG, P ;
HAGENFELDT, L ;
HENDLER, R ;
WAHREN, J .
JOURNAL OF CLINICAL INVESTIGATION, 1974, 53 (04) :1080-1090
[5]   ORGAN FUEL SELECTION - BRAIN [J].
AMIEL, SA .
PROCEEDINGS OF THE NUTRITION SOCIETY, 1995, 54 (01) :151-155
[6]   Failure of activation of spinal motoneurones after muscle fatigue in healthy subjects studied by transcranial magnetic stimulation [J].
Andersen, B ;
Westlund, B ;
Krarup, C .
JOURNAL OF PHYSIOLOGY-LONDON, 2003, 551 (01) :345-356
[7]   The effects of frequency of encouragement on performance during maximal exercise testing [J].
Andreacci, JL ;
LeMura, LM ;
Cohen, SL ;
Urbansky, EA ;
Chelland, SA ;
Von Duvillard, SP .
JOURNAL OF SPORTS SCIENCES, 2002, 20 (04) :345-352
[8]   A TEST OF THE COPE MODEL ON MOTOR-PERFORMANCE AND AFFECT [J].
ANSHEL, MH .
PERCEPTUAL AND MOTOR SKILLS, 1994, 78 (03) :1016-1018
[9]   The unknown mechanism of the overtraining syndrome - Clues from depression and psychoneuroimmunology [J].
Armstrong, LE ;
VanHeest, JL .
SPORTS MEDICINE, 2002, 32 (03) :185-209
[10]  
ARNOLD M, 2000, PSYCHOL MED, V32, P1075