Pareto optimality and particle swarm optimization

被引:106
作者
Baumgartner, U [1 ]
Magele, C [1 ]
Renhart, W [1 ]
机构
[1] Graz Tech Univ, Inst Fundamentals & Theory Elect Engn, A-8010 Graz, Austria
关键词
pareto optimality; particle swarm optimization (PSO); stochastic optimization;
D O I
10.1109/TMAG.2004.825430
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Real-world optimization problems often require the minimization/maximization of more than one objective, which, in general, conflict with each other. These problems (multiobjective optimization problems, vector optimization problems) are usually treated by using weighted sums or other decision-making schemes. An alternative way is to look for the pareto-optimal front. In this paper, the particle swarm algorithm is modified to detect the pareto-optimal front.
引用
收藏
页码:1172 / 1175
页数:4
相关论文
共 5 条
  • [1] Stochastic algorithms in electromagnetic optimization
    Alotto, PG
    Eranda, C
    Brandstatter, B
    Furntratt, G
    Magele, C
    Molinari, G
    Nervi, M
    Preis, K
    Repetto, M
    Richter, KR
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 1998, 34 (05) : 3674 - 3684
  • [2] Particle swarm optimization -: Mass-spring system analogon
    Brandstätter, B
    Baumgartner, U
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2002, 38 (02) : 997 - 1000
  • [3] An improved technique for enhancing diversity in Pareto evolutionary optimization of electromagnetic devices
    Di Barba, P
    Farina, M
    Savini, A
    [J]. COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2001, 20 (02) : 482 - 496
  • [4] Schaffer J. D., 1985, Proceedings of an International Conference on Genetic Algorithms and Their Applications, (Pittsburgh, PA), P93
  • [5] COMPUTER PROGRAM PAC