Efficient simulation of one-dimensional quantum many-body systems

被引:1285
作者
Vidal, G [1 ]
机构
[1] CALTECH, Inst Quantum Informat, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.93.040502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a numerical method to simulate the time evolution, according to a generic Hamiltonian made of local interactions, of quantum spin chains and systems alike. The efficiency of the scheme depends on the amount of entanglement involved in the simulated evolution. Numerical analysis indicates that this method can be used, for instance, to efficiently compute time-dependent properties of low-energy dynamics in sufficiently regular but otherwise arbitrary one-dimensional quantum many-body systems. As by-products, we describe two alternatives to the density matrix renormalization group method.
引用
收藏
页码:040502 / 1
页数:4
相关论文
共 24 条
[1]   RIGOROUS RESULTS ON VALENCE-BOND GROUND-STATES IN ANTIFERROMAGNETS [J].
AFFLECK, I ;
KENNEDY, T ;
LIEB, EH ;
TASAKI, H .
PHYSICAL REVIEW LETTERS, 1987, 59 (07) :799-802
[2]   VALENCE BOND GROUND-STATES IN ISOTROPIC QUANTUM ANTIFERROMAGNETS [J].
AFFLECK, I ;
KENNEDY, T ;
LIEB, EH ;
TASAKI, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 115 (03) :477-528
[3]  
Albeverio S, 1988, TEXTS MONOGRAPHS PHY, DOI DOI 10.1007/978-3-642-88201-2
[4]   Time-dependent density-matrix renormalization-group using adaptive effective Hilbert spaces -: art. no. P04005 [J].
Daley, AJ ;
Kollath, C ;
Schollwöck, U ;
Vidal, G .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
[5]   ENTANGLED QUANTUM-SYSTEMS AND THE SCHMIDT DECOMPOSITION [J].
EKERT, A ;
KNIGHT, PL .
AMERICAN JOURNAL OF PHYSICS, 1995, 63 (05) :415-423
[6]   FINITELY CORRELATED STATES ON QUANTUM SPIN CHAINS [J].
FANNES, M ;
NACHTERGAELE, B ;
WERNER, RF .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 144 (03) :443-490
[7]   FINITELY CORRELATED PURE STATES [J].
FANNES, M ;
NACHTERGAELE, B ;
WERNER, RF .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 120 (02) :511-534
[8]  
HASELGROVE HL, QUANTPH0308083
[9]  
Nielsen Michael A, 2002, Quantum computation and quantum information, DOI DOI 10.1119/1.1463744
[10]  
OSTLUND S, 1995, PHYS REV LETT, V75, P3537, DOI 10.1103/PhysRevLett.75.3537