Highly accurate eigenvalues for the distorted Coulomb potential

被引:23
作者
Ixaru, LG
De Meyer, H
Vanden Berghe, G
机构
[1] State Univ Ghent, Dept Appl Math & Comp Sci, B-9000 Ghent, Belgium
[2] Inst Phys & Nucl Engn, Dept Theoret Phys, R-76900 Bucharest, Romania
来源
PHYSICAL REVIEW E | 2000年 / 61卷 / 03期
关键词
D O I
10.1103/PhysRevE.61.3151
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider the eigenvalue problem for the radial Schrodinger equation with potentials of the form V(r) =S(r)/r+R(r) where S(r) and R(r) are well behaved functions which tend to some (not necessarily equal) constants when r-->0 and r-->infinity. Formulas (14.4.5)-(14.4.8) of Abramowitz and Stegun [Handbook of Mathematical Functions, 8th ed. (Dover, New York, 1972)], corresponding to the pure Coulomb case, are here generalized for this distorted case. We also present a complete procedure for the numerical solution of the problem. Our procedure is robust, very economic and particularly suited for very large n. Numerical illustrations for n up to 2000 are given.
引用
收藏
页码:3151 / 3159
页数:9
相关论文
共 22 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]  
BREZINSKI C, 1992, EXTRAPOLATION METHOD
[3]   DYNAMICAL GROUP-APPROACH TO THE EXPONENTIAL COSINE SCREENED COULOMB POTENTIAL [J].
DEMEYER, H ;
FACK, V ;
VANDENBERGHE, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (14) :L849-L851
[4]   THE EXPONENTIAL COSINE SCREENED COULOMB POTENTIAL IN THE FRAMEWORK OF ALGEBRAIC PERTURBATION-THEORY [J].
FACK, V ;
DEMEYER, H ;
VANDENBERGHE, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (12) :L709-L713
[5]   A SIMPLE ITERATIVE SOLUTION OF THE SCHRODINGER-EQUATION IN MATRIX REPRESENTATION FORM [J].
FERNANDEZ, FM ;
MESON, AM ;
CASTRO, EA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (09) :1389-1398
[6]  
Flugge S., 1974, Practical Quantum Mechanics
[7]  
Gallagher T., 1994, RYDBERG ATOMS, DOI DOI 10.1017/CBO9780511524530.021
[8]  
GALLAGHER TF, 1983, RYDBERG STATES ATOMS
[9]  
Hulthen L., 1942, ARK MAT ASTRON FYS, V28A, P5
[10]   SIMPLE PROCEDURE TO COMPUTE ACCURATE ENERGY-LEVELS OF AN ANHARMONIC-OSCILLATOR [J].
IXARU, LG .
PHYSICAL REVIEW D, 1982, 25 (06) :1557-1564