Resolution limit of traveltime tomography

被引:30
作者
Dahlen, FA [1 ]
机构
[1] Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA
关键词
integral transforms; inverse theory; tomography; traveltime;
D O I
10.1111/j.1365-246X.2004.02214.x
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We derive an explicit formula relating a recovered 3-D seismic slowness image to the actual seismic slowness under the assumption that a tomographically complete collection of finite-frequency traveltime shifts is inverted using linearized ray theory. The tomographically recovered image is blunted, or diminished in amplitude, and blurred, or spread laterally, as a result of wave front healing and other finite-frequency diffraction effects. The 1-D spreading varies as the cube root of the amplitude reduction, so that total volume-integrated slowness is conserved.
引用
收藏
页码:315 / 331
页数:17
相关论文
共 13 条
[1]   The two-dimensional resolution kernel associated with retrieval of ionospheric and atmospheric refractivity profiles by Abelian inversion of radio occultation phase data [J].
Ahmad, B ;
Tyler, GL .
RADIO SCIENCE, 1998, 33 (01) :129-142
[2]   Traveltimes of waves in three-dimensional random media [J].
Baig, AM ;
Dahlen, FA ;
Hung, SH .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2003, 153 (02) :467-482
[3]  
BAIG AM, 2004, IN PRESS GEOPHYS J I
[5]   Frechet kernels for finite-frequency traveltimes - I. Theory [J].
Dahlen, FA ;
Hung, SH ;
Nolet, G .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2000, 141 (01) :157-174
[6]   Wavefront healing: a banana-doughnut perspective [J].
Hung, SH ;
Dahlen, FA ;
Nolet, G .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2001, 146 (02) :289-312
[7]   A NEW SLANT ON SEISMIC IMAGING - MIGRATION AND INTEGRAL GEOMETRY [J].
MILLER, D ;
ORISTAGLIO, M ;
BEYLKIN, G .
GEOPHYSICS, 1987, 52 (07) :943-964
[8]   Finite-frequency tomography reveals a variety of plumes in the mantle [J].
Montelli, R ;
Nolet, G ;
Dahlen, FA ;
Masters, G ;
Engdahl, ER ;
Hung, SH .
SCIENCE, 2004, 303 (5656) :338-343
[9]  
MONTELLI R, 2004, IN PRESS GEOPHYS J I
[10]  
Morse P. M., 1968, THEORETICAL ACOUSTIC, P306